http://repositorio.unb.br/handle/10482/51045
Fichier | Description | Taille | Format | |
---|---|---|---|---|
ARTIGO_Estimates_for_eigenvalues.pdf | 4,03 MB | Adobe PDF | Voir/Ouvrir |
Titre: | Estimates for eigenvalues of the Neumann and Steklov problems |
Auteur(s): | Du, Feng Mao, Jing Qiaoling, Wang Xia, Changyu Zhao, Yan |
Assunto:: | Problema de Neumann Problema de Steklov Fourier, Transformações de |
Date de publication: | jui-2023 |
Editeur: | De Gruyter |
Référence bibliographique: | DU, Feng et. al. Estimates for eigenvalues of the Neumann and Steklov problems. Advances in Nonlinear Analysis, [S. l.], v. 12. 2023. DOI: https://doi.org/10.1515/anona-2022-0321. Disponível em: https://www.degruyter.com/document/doi/10.1515/anona-2022-0321/html. Acesso em: 02 dez. 2024. |
Abstract: | We prove Li-Yau-Kröger-type bounds for Neumann-type eigenvalues of the biharmonic operator on bounded domains in a Euclidean space. We also prove sharp estimates for lower order eigenvalues of a biharmonic Steklov problem and of the Laplacian, which directly implies two sharp Reilly-type inequalities for the corresponding first nonzero eigenvalue. |
metadata.dc.description.unidade: | Instituto de Ciências Exatas (IE) Departamento de Matemática (IE MAT) |
Licença:: | (CC-BT) This work is licensed under the Creative Commons Attribution 4.0 International License. |
DOI: | https://doi.org/10.1515/anona-2022-0321 |
metadata.dc.relation.publisherversion: | https://www.degruyter.com/document/doi/10.1515/anona-2022-0321/html |
Collection(s) : | Artigos publicados em periódicos e afins |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.