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Abstract: We prove Li-Yau-Kröger-type bounds for Neumann-type eigenvalues of the biharmonic operator on
bounded domains in a Euclidean space. We also prove sharp estimates for lower order eigenvalues of a
biharmonic Steklov problem and of the Laplacian, which directly implies two sharp Reilly-type inequalities
for the corresponding first nonzero eigenvalue.
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1 Introduction

Throughout this article, let Ω be a bounded domain with smooth boundary ∂Ω in the Euclidean n-space !n.
Consider the Neumann eigenvalue problem of the Laplacian Δ as follows:
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(1.1)

where ∂
∂ν is the outward normal derivative on the boundary ∂Ω w.r.t. the outward unit normal vector ν. The

system (1.1) can be used to describe the vibration of membrane and is also called the free membrane problem. It
is well known that this problem has discrete spectrum { } =

∞μi i 1 diverging to infinity and satisfying( ) ( ) ( )= < ≤ ≤⋯ ↑ + ∞μ μ μ0 Ω Ω Ω .1 2 3

In [1], Ashbaugh and Benguria conjectured that
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where BΩ is the ball of same volume as Ω, ( )μ Ωi is the ith Neumann eigenvalue on Ω, and ( )μ B2 Ω is the first
nonzero Neumann eigenvalue on BΩ. In [21], Wang and Xia proved that
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which supports the above conjecture of Ashbaugh and Benguria.
On the other hand, corresponding to the Li-Yau’s classical result for Dirichlet eigenvalues of the Laplacian

[15], Kröger [14] obtained the following inequality for the sum of the Neumann eigenvalues:
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and the upper bound estimate for the ( )+k 1 th Neumann eigenvalue
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where ωn denotes the volume of the unit ball in !n and ∣ ∣Ω represents the volume of Ω.
Consider a Neumann-type eigenvalue problem of the biharmonic operator Δ2 as follows:
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where ≥τ 0 and ( ( ) )∈ − −σ n1 / 1 , 1 are two constants, and ∂div Ω denotes the tangential divergence operator on
∂Ω, D u2 is the Hessian matrix of u and ( )⋅ ∂D u ν2 Ω stands for the projection of ⋅D u ν2 to the tangent bundle of
∂Ω. In this setting, problem (1.6) has discrete spectrum and all the eigenvalues in the spectrum can be listed
non-decreasingly as follows (e.g., [8, Proposition 4.1]):( ) ( ) ( )= ≤ ≤ ≤⋯≤⋯ ↑ + ∞0 Λ Ω Λ Ω Λ Ω .1 2 3

This problem is called the eigenvalue problem of free plate under tension and with nonzero Poisson’s ratio,
which for =n 2 can be used to describe the deformation of a planar material under compression, τ σ, denote a
parameter related to the tension and a Poisson’s ratio of the material, respectively. By the Rayleigh-Ritz
characterization, the Neumann-type eigenvalues (if exist and with the abuse of terminology) of (1.6) are given
by (e.g., [8,16] while [2,7] for the case =σ 0)
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where ∇ is the gradient operator, uj is an eigenfunction corresponding to the eigenvalue ( )Λ Ωj , and
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2
. For convenience, without specification, in the sequel we will drop the integral measure

for all integrals.

Remark 1.1.
(1) In [7,8,16], the authors therein used the operator [( ) ]∂ D u νProj Ω

2 to denote the projection of ( )D u ν2 onto the
space tangent to ∂Ω, which obviously has the same meaning as ( )⋅ ∂D u ν2 Ω here.

(2) As before, let !⊂B nΩ be the ball of same volume as Ω. When >τ 0, =σ 0, Chasman [7] proved the
following isoperimetric inequality:( ) ( )≤ BΛ Ω Λ , with equality if and only if Ω is a ball .1 1 Ω
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When >τ 0, ( ( ) )∈ − −σ n1 / 1 , 1 , Chasman [8] conjectured that the above isoperimetric inequality is still
true and successfully proved a weaker version of it. Moreover, she also gave numerical and analytic
evidence to support this conjecture – see [8, Section 8] for details.

When ≥τ 0, ≤ <σ0 1, for the eigenvalue problem (1.6), we can obtain the following:

Theorem 1.2. Let Ω, ∣ ∣Ω and ωn be defined as before, and let ( )Λ Ωj be the jth eigenvalue of system (1.6).
(i) When ≥τ 0 and ≤ <σ0 1, we have
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(ii) When =τ 0 and ≤ <σ0 1, it holds
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(iii) When >τ 0 and ≤ <σ0 1, we have
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Remark 1.3.
(1) Recently, when ≥τ 0, =σ 0, Brandolini et al. [2] have already obtained upper bounds for the sum of the

first k eigenvalues ( )Λ Ωi and for the ( )+k 1 th eigenvalue ( )+Λ Ωk 1 . Inspired by this fact and our Theorem 1.2
here, together with the coercivity argument for the sesquilinear form shown in [8, Section 4], the corre-
sponding author, Prof. J. Mao, and his another collaborator can also obtain the estimates (1.8)–(1.10) under
a more general setting that ≥τ 0, ( ( ) )∈ − −σ n1 / 1 , 1 – see [16, Theorem 1.1 and Corollary 1.2] for details.
Although [16] has been published formally recently, we still prefer to remain Theorem 1.2 to emphasize
and embody the origin and continuity of our thought.

(2) One might find that Theorem 1.2 can be seen as a generalization of those related eigenvalue estimates
shown in [5, 19].

(3) Clearly, if =τ 0 and =σ 1, then (1.6) degenerates into
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At the end of [8, Section 4], Chasman showed that for the eigenvalue problem (1.11), all ( )H Ω2 harmonic
functions are eigenfunctions with eigenvalue zero, and one has at least an eigenvalue of infinite multi-
plicity. Based on this fact, we need to expel =τ 0, =σ 1 in Theorem 1.2 here.

We also consider the following Steklov-type eigenvalue problem of the biharmonic operator
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(1.12)

where !∈τ σ, and other same symbols have the same meanings as those in (1.6).
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Remark 1.4.
(1) Li and Mao [17, Theorem 2.1] showed clearly that if >τ 0 and ( ( ) )∈ − −σ n1 / 1 , 1 , the eigenvalue problem

(1.12) has the discrete spectrum and its elements (i.e., eigenvalues) can be listed non-decreasingly as
follows: ( ) ( ) ( ) ( )= < ≤ ≤⋯≤ ≤⋯ ↑ ∞λ λ λ λ0 Ω Ω Ω Ω .k1 2 3

By means of variational principle, the Rayleigh-Ritz-type characterization of the k th eigenvalue ( )λ Ωk is
given by

( ) [( )∣ ∣ ( ) ∣ ∣ ]
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where uj is an eigenfunction corresponding to the eigenvalue ( )λ Ωj . Besides, the eigenfunction u1 of( ) =λ Ω 01 should be nonzero constant function.
(2) When >τ 0, =σ 0, Buoso and Provenzano [6] proved an isoperimetric inequality for the fundamental tone( )λ Ω2 of system (1.12) which states that ( ) ( )≤λ λ BΩ ,2 2 Ω

with equality if and only if Ω is a ball. Here, as before, !⊂B nΩ is the ball of same volume as Ω. Recently, Li
and Mao [17, Theorem 1.1] showed that the above isoperimetric inequality is still true for >τ 0 and( ( ) )∈ − −σ n1 / 1 , 1 , and moreover, the inequality can be achieved when Ω is the ball BΩ.

(3) For some other estimates for λi’s, see, e.g., [3,4,6,12,22].

Our next result is a sharp lower bound for the sum of the reciprocals of the first n nonzero eigenvalues of
problem (1.12).

Theorem 1.5. Let Ω and ∣ ∣Ω be defined as before, and let ( )λ Ωj be the jth eigenvalue of system (1.12). When >τ 0
and ( ( ) )∈ − −σ n1 / 1 , 1 , we have

( ) ∣ ∣∣ ∣ ∣ ∣∑
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= + ∂
λ τ H
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Ω
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,
j

n

j1 1

2

Ω
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where H is the mean curvature vector of∂Ω in!n, ∣ ∣∂Ω denotes the area of∂Ω. Equality in (1.14) holds if and only
if Ω is a ball.

Using the monotonicity of eigenvalues λi’s and Theorem 1.5 immediately, we obtain
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n
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Ω
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which directly implies the following Reilly-type eigenvalue estimate.

Corollary 1.6. Under the assumptions in Theorem 1.5, we have

( ) ∣ ∣∣ ∣ ∣ ∣∫≤ ∂
∂

λ nτ HΩ Ω
Ω ,2 2

Ω

2

with equality holding if and only if Ω is a ball.

Remark 1.7. Clearly, when the Reilly-type eigenvalue estimate in Corollary 1.6 attains the equality case, one
also has ( ) ( ) ( )= = ⋯= +λ λ λΩ Ω Ωn2 3 1 .

Let M be an n-dimensional compact submanifold without the boundary, and the so-called closed eigen-
value problem of the Laplacian Δ on M is actually to find all possible real numbers such that
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+ =u ηu MΔ 0 in

has non-trivial solutions. It is well-known that in this setting, Δ only has discrete spectrum and all the elements
(i.e., eigenvalues) in this discrete spectrum can be listed non-decreasingly as follows:( ) ( ) ( ) ( )= < ≤ ≤⋯≤ ≤⋯ ↑ ∞η M η M η M η M0 .k1 2 3

The eigenspace of ( )η Mi , which consists of all the eigenfunctions of ( )η Mi , has finite dimension, and moreover,
each ( )η Mi in the above sequence should repeat according to its multiplicity (i.e., the dimension of its eigen-
space). It is easy to know that the eigenfunctions of the first trivial eigenvalue ( ) =η M 01 are nonzero constant
functions. By using the variational principle (i.e., essentially, Rayleigh’s theorem and Max-min theorem – see,
e.g., [9, Chapter I]), one knows that the kth closed eigenvalue ηk can be characterized as follows:

( ) ∣ ∣
( ) ∫∫

∫=
⎧
⎨
⎩

∇
= = −

⎫
⎬
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η M
u

u
uu j kinf 0, 1, …, 1 ,k u H M

M

M M
j

0

2

22

where uj is an eigenfunction corresponding to the eigenvalue ( )η Mj , and as usual, by the abuse of notations, ∇
is the gradient operator.

Our final result is a sharp lower bound for the sum of the reciprocals of the first n nonzero eigenvalues of
the Laplacian on a closed submanifold immersed in a Euclidean space. Namely, we have:

Theorem 1.8. Let M be an n-dimensional compact submanifold without the boundary isometrically immersed in
!N and let ( )η Mj be the jth closed eigenvalue of the Laplacian on M. We have

( ) ∣ ∣∣ ∣∑
∫≥

= +η M
M
H

1 ,
j

n

j M1 1 2 (1.15)

where H is the mean curvature vector of M in !N .Moreover, when = −n N 1, equality holds in (1.15) if and only
if M is a hypersphere of !N , and when < −n N 1, if the equality holds in (1.15), then M is a minimal submanifold
of some hypersphere of !N .

Using the monotonicity of nonzero closed eigenvalues ηi’s of the Laplacian and Theorem 1.8 immediately,
we obtain

( ) ∣ ∣∣ ∣∑
∫≥ ≥

= +

n
η M η

M
H

1 ,
j

n

j M2 1 1 2

which directly implies the following Reilly’s eigenvalue estimate (i.e., the main result of the influential
article [20]).

Corollary 1.9. Under the assumptions in Theorem 1.8, we have

( ) ∣ ∣ ∣ ∣∫≤η M n
M H ,

M
2

2

and moreover, the equality holds implying the rigidity described as in Theorem 1.8.

Remark 1.10.
(1) Clearly, when the Reilly-type eigenvalue estimate in Corollary 1.9 attains the equality case, one also has( ) ( ) ( )= = ⋯= +η M η M η Mn2 3 1 , and if furthermore = −n N 1, then ( ) ( ) ( )> =+ +η M η M η Mn n i3 2 for =i

+n2, 3,…, 1, since the multiplicity of the first nonzero closed eigenvalue of the Laplacian on any
n-sphere in ! +n 1 is +n 1 and the corresponding eigenfunctions are the restrictions (to n-sphere) of

+n 1 coordinate functions of ! +n 1 (e.g., [9, Chapter 2] for this fact).
(2) Except Reilly’s estimate for the first nonzero eigenvalue of the Laplacian (see [20] or Corollary 1.9 here) and

our Reilly-type estimate for the first nonzero eigenvalue of (1.12) – the Steklov-type eigenvalue problem of

Estimates for eigenvalues of the Neumann and Steklov problems  5



the biharmonic operator (Corollary 1.6), some interesting Reilly-type estimates for the first nonzero eigen-
value of other type have also been obtained. For instance, Ilias and Makhoul [13] have obtained the Reilly-
type estimate for the first nonzero Steklov eigenvalue of the Laplacian on compact submanifolds (with
boundary) isometrically immersed in a Euclidean space; Du and Mao [11] have obtained the Reilly-type
estimate for the first nonzero closed eigenvalue of the nonlinear p-Laplacian ( < < +∞p1 ) on compact
submanifolds (without boundary) isometrically immersed into a Euclidean space, a unit sphere, or even a
projective space.

For convenience, in the sequel, we prefer to simplify the notations for four types of eigenvalues discussed
in this article, that is, we separately write ( )Λ Ωi , ( )λ Ωi , and ( )η Mi as Λi, λi and ηi. We also make an agreement
that these notations would be written completely if necessary.

This article is organized as follows. In Section 2, we will prove Li-Yau-Kröger-type estimates for lower-
order eigenvalues of the Neumann-type eigenvalue problem (1.6) of the biharmonic operator. Two sharp
extrinsic lower bounds for the sum of the reciprocals of the first n nonzero eigenvalues of the Steklov-type
eigenvalue problem (1.12) and for the sum of the reciprocals of the first n nonzero closed eigenvalues of the
Laplacian will be separately proven in Section 3.

2 Li-Yau-Kröger-type estimates

In this section, inspired by [2,14,15], and using the method of Fourier transformation, together with the
Rayleigh-Ritz type characterization (1.7), we can give the proof of Li-Yau-Kröger-type estimates (for the bihar-
monic operator) by appropriately constructing trial functions.

We have:

Proof of Theorem 1.2. Let { } =
∞ψj j 1 be the set of orthonormal eigenfunctions of system (1.6), that is,

( )
( ) ( )
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∂
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∂
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∂
∂ = ∂

=
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ψ τ ψ ψ

σ
ψ
ν σ ψ

τ
ψ
ν σ D ψ ν

ψ
ν

ψ ψ

Δ Δ Λ in Ω,

1 Δ 0 on Ω,

1 div
Δ

0 on Ω,

0.

j j j j

j
j

j
j

j

j l

2

2

2

Ω 2 Ω

Ω

Define

( ) ( ) ( )∑= ∈
=

x y ψ x ψ y x yΦ , , , Ω,
j

k

j j
1

and let

( ) ( ) ( )∫= ⋅z y π x y xΦ̂ , 1
2 Φ , e dix z

Ω
n
2

be the Fourier transform of Φ in the variable x , where we have used the same definition (for Fourier trans-
form) as that in Li-Yau’s article [15]. Since one can check that

( ) ( ) ( ) ( )∫∑=
=

⋅π z y ψ y ψ x x2 Ψ̂ , e d
j

k

j j
ix z

1 Ω

n
2

is the orthogonal projection of the function ( ) = ⋅h y ez iy z onto the subspace of ( )L Ω2 spanned by ψ ψ,…, k1 , we
can use ( ) ( ) ( ) ( )= −φ z y h y π z y, 2 Ψ̂ ,z

n
2 as a trial function for +Λk 1 to obtain
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Since ∣ ( ) ∣ ∣ ∣=h y zz y pp and ∣ ( ) ∣ ∣ ∣∣ ∣=h y z zz y y p qp q , then ∣ ( )∣ ∣ ∣=h y zΔy z 2, ∣ ( )∣ ∣ ∣∇ =h y zy z , and
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n τ r
nΩ 4 2 .n

n n
1

4 2
(2.3)

Integrating by parts and noticing ( ) ( ) ( )= ∑ =z y ψ y ψ zΨ̂ , j
k

j j1 , it follows that
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( ) (( ) ( ) ( ) ( ) ( ) ( ) ( ))
( ) ∣ ( )∣

∫∫

∫∑

= −
⎧
⎨
⎩

− + −
⎫
⎬
⎭

= −
=

P π σ h y z y σh y z y τh y z y y z

π ψ z z

2 2 Re 1 Δ Ψ̂ , Δ Ψ̂ , Δ Ψ̂ , d d

2 2 Λ d

B
z y z y z y

n
j

n
j

B
j

2
Ω

2 2

1
2

n

r

r

2

(2.4)

and



(( )∣ ( )∣ ∣ ( )∣ ∣ ( )∣ )
( )( ) ( )

( ) ∣ ( )∣

∫∫

∫∫

∫∑

= − + + ∇

= −

=
=

P σ D z y σ z y τ z y y z

z y τ z y y z

π ψ z z

1 Ψ̂ , Δ Ψ̂ , Ψ̂ , d d

Ψ̂ , Δ Δ Ψ̂ , d d

2 Λ d .

B
y y y

B
y y

n
j

k
j

B
j

3
Ω

2 2 2 2

Ω

2

1
2

r

r

r

(2.5)

Combining (2.1)–(2.5), we have

∣ ∣ ( ) ∣ ( )∣
∣ ∣ ( ) ∣ ( )∣∣ ∣

∫

∫
≤

⎧

⎨
⎪

⎩
⎪

⎛
⎝ + ⎞

⎠ − ∑

− ∑

⎫

⎬
⎪

⎭
⎪

+

> ⎛
⎝

⎞
⎠

+ + =

=

+ +
ω τ π ψ z z

ω r π ψ z z
Λ inf

Ω 2 Λ ˆ d

Ω 2 ˆ d
.k

r π k
ω

n
r
n

r
n

n
j
k

j
B

j

n n n
j
k

B
j

1
2 Ω

4 2 1
2

1
2

n

n

n n

r

r

1

4 2

(2.6)

Setting ∣ ( )∣∫≔c ψ z zˆ dj B j
2

r
, =j k1,…, . By Plancherel’s theorem, one has

≤ =c j k1 for 1,…, ,j (2.7)

and we deduce from (2.6) that

∣ ∣ ( ) ∣ ∣ ( )∑ ∑⎟⎜

⎛

⎝
⎜ −

⎞

⎠
⎟ ≤ ⎛

⎝ + + +
⎞
⎠ −+

=

+ +

=
ω r π c nω r

n τ r
n π cΛ Ω 2 Ω 4 2 2 Λ ,k n n n

j

k
j n

n n
n

j

k
j j1

1

4 2

1

which by (2.7) implies that

∣ ∣ ∣ ∣ ( ) ( )∑⎟⎜− ⎛
⎝ + + +

⎞
⎠ ≤ −+

+ +

=
+ω r nω r

n τ r
n πΛ Ω Ω 4 2 2 Λ Λk n n n

n n
n

j

k
k j1

4 2

1
1

with ∣ ∣> ⎛
⎝

⎞
⎠r π2 k

ω Ωn

n
1

. Hence,

( ) ∣ ∣ ( ( ) ∣ ∣ ) ∣ ∣∑ ⎜ ⎟⎟⎜≤ ⎛
⎝ + + +

⎞
⎠ + − > ⎛

⎝
⎞
⎠=

+ +
+π nω r

n τ r
n k π ω r r π k

ω2 Λ Ω 4 2 2 Ω Λ , 2 Ω .n
j

k
j n

n n
n n n k

n1

4 2
1

n
1

Since ∣ ∣> ⎛
⎝

⎞
⎠r π2 k

ω Ωn

n
1

, we infer from the above inequality that

∣ ∣( ) ∣ ∣∑ ⎜ ⎟⎟⎜≤ ⎛
⎝ + + +

⎞
⎠ > ⎛

⎝
⎞
⎠=

+ +r
n τ r

n
nω

π r π k
ωΛ 4 2

Ω
2 , 2 Ω .

j

k
j

n n n
n n1

4 2 n
1

One obtains (1.8) directly by letting ∣ ∣→ ⎛
⎝

⎞
⎠r π2 k

ω Ωn

n
1

.

Combining (2.6) and (2.7), we have

∣ ∣∣ ∣ ( ) ∣ ∣⎜ ⎟≤

⎛
⎝ + ⎞

⎠
− ∀ > ⎛

⎝
⎞
⎠+

+ +
+ +

τ ω

ω r k π r π k
ωΛ

Ω

Ω 2 , 2 Ω .k

r
n

r
n n

n n n n
1

4 2
n n

n
4 2

1
(2.8)

Consequently, we have
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( ) ∣ ∣∣ ∣ ( )∣ ∣
≤

⎛
⎝ + ⎞

⎠
− ≥+

> ⎛
⎝

⎞
⎠

+ +
+ +

nω τ

ω r k π kΛ Ω inf
Ω

Ω 2 , 0.k
r π k

ω

n
r
n

r
n

n n n1
2 Ω

4 2

n

n

n n

1

4 2

For the case =τ 0, solving ( )′ =F r 0 yields

( )∣ ∣⎜ ⎟= ⎛
⎝

+ ⎞
⎠r π n k

ω2 4
4 Ω .

n

n
1

Taking the above value of r into (2.8), we have (1.9). □

3 Reilly-type estimates

In the last section, by using the QR-factorization theorem and the variational principle, we can give the proofs
of two sharp extrinsic lower bounds for the sum of the reciprocals of the first n nonzero eigenvalues (given in
Theorems 1.5 and 1.8) by constructing appropriately trial functions. In fact, we have already used the method
of QR-factorization (together with other approaches) to try to obtain estimates for the sum of the reciprocals of
the first n nonzero eigenvalues of prescribed eigenvalue problems (see, e.g., [18]).

First, we have:

Proof of Theorem 1.5. Let x x,…, n1 be the coordinate functions in !n. Since Ω is a bounded domain in !n, we
can regard ∂Ω as a closed hypersurface of !n without boundary.

Let uj be an eigenfunction corresponding to the eigenvalue λj such that { } =
∞uj j 1 is an orthonormal basis of( )∂L Ω2 , that is,

( )
( ) ( )

∫

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

− =

−
∂
∂ + = ∂

∂
∂ − − ⋅ −

∂
∂ = − ∂

=

∂ ∂

∂

u τ u

σ
u
ν σ u

τ
u
ν σ D u ν

u
ν λ u

u u δ

Δ Δ 0 in Ω,

1 Δ 0 on Ω,

1 div
Δ

on Ω,

.

j j

j
j

j
j

j
j i

i j ij

2

2

2

Ω 2 Ω

Ω

Observe that ∣ ∣= ∂u 1 / Ω1 is a constant. By translating the origin appropriately, we can assume that

∫ = =
∂

x i n0, 1,…, ,i
Ω

(3.1)

that is, ⊥x ui 1. Next, we will show that a suitable rotation of axes can be made so as to insure that

∫ =
∂

+x u 0,j i
Ω

1 (3.2)

for =j n2, 3,…, and = −i j1, 2 …, 1. To see this, define an ×n n matrix ( )=Q q ,ji where ∫= ∂ +q x uji j iΩ 1, for
=i j n, 1, 2,…, . Using the orthogonalization of Gram and Schmidt (i.e., QR-factorization theorem), we know

that there exist an upper triangle matrix ( )=T Tji and an orthogonal matrix ( )=U aji such that =T UQ, i.e.,

∫∑ ∑= = = ≤ < ≤
= ∂ =

+T x q a x u i j n0, 1 .ji
k

n
jk ki

k

n
jk k i

1 Ω 1
1

Letting = ∑ =y a xj k
n

jk k1 , we obtain
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∫ ∫ ∑= = ≤ < ≤
∂

+
∂ =

+y u a x u i j n0, 1 .j i
k

n
jk k i

Ω
1

Ω 1
1 (3.3)

SinceU is an orthogonal matrix, y y y, ,…, n1 2 are also coordinate functions on !n. Therefore, denoting these
coordinate functions still by x x x, ,…, n1 2 , one can obtain (3.2). From (3.1) and (3.2), one sees that{ }⊥ −x u u u u, , …, ,j j j1 2 1 in ( )∂L Ω2 .

It follows from the variational characterization (1.13) that

(∣ ∣ ∣ ∣ ) ∣ ∣∫ ∫≤ + ∇ = =+
∂

λ x D x τ x τ j nΩ , 1,…, ,j j j j1
Ω

2

Ω

2 2 2

which implies that

∣ ∣ ∣ ∣∫ ∫∑ ∑≥ =
= + = ∂ ∂

λ τ x x1 Ω .
j

n

j j

n

j
1 1 1 Ω

2

Ω

2

Multiplying both sides of the above inequality by ∣ ∣∫∂ HΩ
2, and using the Schwarz inequality, we obtain

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ⟨ ⟩ ∣ ∣∫ ∫ ∫ ∫∑ ≥ ≥
⎛

⎝
⎜

⎞

⎠
⎟ = ∂

= + ∂ ∂ ∂ ∂
λ τ x xH H H1 Ω , Ω ,

j

n

j1 1 Ω

2

Ω

2

Ω

2

Ω

2
2 (3.4)

which gives (1.14).
If equality holds in (1.14), then all the inequalities in (3.4) should be equalities, which implies that =x κH

holds on ∂Ω for some constant ≠κ 0. Thus, for any tangent vector fieldV on ∂Ω, we have (∣ ∣ ) ⟨ ⟩= =V x V x2 , 02

and so ∣ ∣x and ∣ ∣H are constants on ∂Ω. Since ∂Ω is a closed hypersurface of !n, we conclude that ∂Ω is a round
sphere. This completes the proof of Theorem 1.5. □

At the end, we also have:

Proof of Theorem 1.8. As before, by the abuse of notations, Δ and ∇ denote the Laplacian and the gradient
operator on M , respectively. Without loss of generality, we can assume that M does not lie in a hyperplane of
!N . Let ( )=x x x, …, N1 be the position vector of M in !N , and let uj be the normalized eigenfunction corre-
sponding to the jth nonzero eigenvalue μj of the Laplacian of M . By a similar discussion as in the proof of
Theorem 1.5, we can assume that { }⊥ −x u u u u, , …, ,j j j1 2 1 in ( )L M2 . Then, one has

∣ ∣∫ ∫≤ ∇ =+η x x j N, 1,…, ,j
M

j
M

j1
2 2

which implies that

∣ ∣ ∣ ∣∫ ∫ ∫∑ ∑∇ ≥ =
= + =η x x x1 .

j

N

j M
j

j

N

M
j

M1 1
2

1

2 2

By the derivation of (2.2) in [10], it is easy to know that

∣ ∣ ∣ ∣∑∇ ≤ ∇ =
=

x x n1, ,j
j

N
j2

1
2

and then we have

∣ ∣ ∣ ∣ ∣ ∣
∣ ∣ ∣ ∣
∣ ∣ ( ∣ ∣ )

∑ ∑ ∑

∑ ∑

∑ ∑

∑

⎜ ⎟

∇ ≤ ∇ + ∇

= ∇ +
⎛
⎝

− ∇
⎞
⎠

≤ ∇ + − ∇

=

= + = + + = +

= + + =

= + = +

= +

η x η x η x

η x η n x

η x η x

η

1 1 1

1 1

1 1 1

1 ,

j

N

j
j

j

n

j
j

n A n

N
A

j

n

j
j

n i

n
j

j

n

j
j

i

n

i
i

j

n

j

1 1
2

1 1
2

2 1
2

1 1
2

2 1
2

1 1
2

1 1
2

1 1

(3.5)
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which gives

∣ ∣ ∣ ∣∫∑ ≥
= +η M x1 .

j

n

j M1 1
2 (3.6)

Multiplying both sides of the above inequality by ∣ ∣∫ HM
2, and using the Schwarz inequality, we have

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ⟨ ⟩ ∣ ∣∫ ∫ ∫ ∫∑ ≥ ≥
⎛

⎝
⎜

⎞

⎠
⎟ =

= +η M x x MH H H1 , ,
j

n

j M M M M1 1
2 2 2

2
2 (3.7)

which implies that (1.15) is true.
If equality holds in (1.15), then equalities hold in all of the above inequalities, which implies that

= ⋯= = ≡+η η η C ,N N2 1

= − =x Cx j N MΔ , 1,…, , on ,j j

and =x κH hold on M for some constant ≠κ 0. From these facts, we know that ∣ ∣x and ∣ ∣H are constants on M .
Therefore, when = −n N 1, M is a hypersphere, and when < −n N 1, M is a minimal submanifold of some
hypersphere of !N . □
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