Skip navigation
Veuillez utiliser cette adresse pour citer ce document : http://repositorio.unb.br/handle/10482/41511
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
Titre: Virtually nilpotent groups with finitely many orbits under automorphisms
Auteur(s): Bastos, Raimundo
Dantas, Alex Carrazedo
Melo, Emerson Ferreira de
Assunto:: Extensões
Automorfismos
Grupos solúveis
Date de publication: 2021
Editeur: Springer
Référence bibliographique: BASTOS, Raimundo; DANTAS, Alex C.; MELO, Emerson de. Virtually nilpotent groups with finitely many orbits under automorphisms. Archiv der Mathematik, v. 116, p. 261–270, 2021. DOI: https://doi.org/10.1007/s00013-020-01566-w.
Abstract: Let G be a group. The orbits of the natural action of Aut(G) on G are called automorphism orbits of G, and the number of automorphism orbits of G is denoted by ω(G). Let G be a virtually nilpotent group such that ω(G)<∞. We prove that G=K⋊H where H is a torsion subgroup and K is a torsion-free nilpotent radicable characteristic subgroup of G. Moreover, we prove that G′=D×Tor(G′) where D is a torsion-free nilpotent radicable characteristic subgroup. In particular, if the maximum normal torsion subgroup τ(G) of G is trivial, then G′ is nilpotent.
DOI: https://doi.org/10.1007/s00013-020-01566-w
metadata.dc.relation.publisherversion: https://link.springer.com/article/10.1007/s00013-020-01566-w
Collection(s) :Artigos publicados em periódicos e afins

Affichage détaillé " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/41511/statistics">



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.