Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.unb.br/handle/10482/41511
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Título : Virtually nilpotent groups with finitely many orbits under automorphisms
Autor : Bastos, Raimundo
Dantas, Alex Carrazedo
Melo, Emerson Ferreira de
Assunto:: Extensões
Automorfismos
Grupos solúveis
Fecha de publicación : 2021
Editorial : Springer
Citación : BASTOS, Raimundo; DANTAS, Alex C.; MELO, Emerson de. Virtually nilpotent groups with finitely many orbits under automorphisms. Archiv der Mathematik, v. 116, p. 261–270, 2021. DOI: https://doi.org/10.1007/s00013-020-01566-w.
Abstract: Let G be a group. The orbits of the natural action of Aut(G) on G are called automorphism orbits of G, and the number of automorphism orbits of G is denoted by ω(G). Let G be a virtually nilpotent group such that ω(G)<∞. We prove that G=K⋊H where H is a torsion subgroup and K is a torsion-free nilpotent radicable characteristic subgroup of G. Moreover, we prove that G′=D×Tor(G′) where D is a torsion-free nilpotent radicable characteristic subgroup. In particular, if the maximum normal torsion subgroup τ(G) of G is trivial, then G′ is nilpotent.
DOI: https://doi.org/10.1007/s00013-020-01566-w
metadata.dc.relation.publisherversion: https://link.springer.com/article/10.1007/s00013-020-01566-w
Aparece en las colecciones: Artigos publicados em periódicos e afins

Mostrar el registro Dublin Core completo del ítem " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/41511/statistics">



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.