Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/41511
Arquivos associados a este item:
Não existem arquivos associados a este item.
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorBastos, Raimundo-
dc.contributor.authorDantas, Alex Carrazedo-
dc.contributor.authorMelo, Emerson Ferreira de-
dc.date.accessioned2021-07-28T02:20:36Z-
dc.date.available2021-07-28T02:20:36Z-
dc.date.issued2021-
dc.identifier.citationBASTOS, Raimundo; DANTAS, Alex C.; MELO, Emerson de. Virtually nilpotent groups with finitely many orbits under automorphisms. Archiv der Mathematik, v. 116, p. 261–270, 2021. DOI: https://doi.org/10.1007/s00013-020-01566-w.pt_BR
dc.identifier.urihttps://repositorio.unb.br/handle/10482/41511-
dc.language.isoInglêspt_BR
dc.publisherSpringerpt_BR
dc.rightsAcesso Restritopt_BR
dc.titleVirtually nilpotent groups with finitely many orbits under automorphismspt_BR
dc.typeArtigopt_BR
dc.subject.keywordExtensõespt_BR
dc.subject.keywordAutomorfismospt_BR
dc.subject.keywordGrupos solúveispt_BR
dc.identifier.doihttps://doi.org/10.1007/s00013-020-01566-wpt_BR
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s00013-020-01566-wpt_BR
dc.description.abstract1Let G be a group. The orbits of the natural action of Aut(G) on G are called automorphism orbits of G, and the number of automorphism orbits of G is denoted by ω(G). Let G be a virtually nilpotent group such that ω(G)<∞. We prove that G=K⋊H where H is a torsion subgroup and K is a torsion-free nilpotent radicable characteristic subgroup of G. Moreover, we prove that G′=D×Tor(G′) where D is a torsion-free nilpotent radicable characteristic subgroup. In particular, if the maximum normal torsion subgroup τ(G) of G is trivial, then G′ is nilpotent.pt_BR
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.