http://repositorio.unb.br/handle/10482/41511
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Bastos, Raimundo | - |
dc.contributor.author | Dantas, Alex Carrazedo | - |
dc.contributor.author | Melo, Emerson Ferreira de | - |
dc.date.accessioned | 2021-07-28T02:20:36Z | - |
dc.date.available | 2021-07-28T02:20:36Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | BASTOS, Raimundo; DANTAS, Alex C.; MELO, Emerson de. Virtually nilpotent groups with finitely many orbits under automorphisms. Archiv der Mathematik, v. 116, p. 261–270, 2021. DOI: https://doi.org/10.1007/s00013-020-01566-w. | pt_BR |
dc.identifier.uri | https://repositorio.unb.br/handle/10482/41511 | - |
dc.language.iso | Inglês | pt_BR |
dc.publisher | Springer | pt_BR |
dc.rights | Acesso Restrito | pt_BR |
dc.title | Virtually nilpotent groups with finitely many orbits under automorphisms | pt_BR |
dc.type | Artigo | pt_BR |
dc.subject.keyword | Extensões | pt_BR |
dc.subject.keyword | Automorfismos | pt_BR |
dc.subject.keyword | Grupos solúveis | pt_BR |
dc.identifier.doi | https://doi.org/10.1007/s00013-020-01566-w | pt_BR |
dc.relation.publisherversion | https://link.springer.com/article/10.1007/s00013-020-01566-w | pt_BR |
dc.description.abstract1 | Let G be a group. The orbits of the natural action of Aut(G) on G are called automorphism orbits of G, and the number of automorphism orbits of G is denoted by ω(G). Let G be a virtually nilpotent group such that ω(G)<∞. We prove that G=K⋊H where H is a torsion subgroup and K is a torsion-free nilpotent radicable characteristic subgroup of G. Moreover, we prove that G′=D×Tor(G′) where D is a torsion-free nilpotent radicable characteristic subgroup. In particular, if the maximum normal torsion subgroup τ(G) of G is trivial, then G′ is nilpotent. | pt_BR |
Aparece nas coleções: | Artigos publicados em periódicos e afins |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.