Skip navigation
Veuillez utiliser cette adresse pour citer ce document : http://repositorio.unb.br/handle/10482/47280
Fichier(s) constituant ce document :
Fichier Description TailleFormat 
SemTexto.pdf1,11 kBAdobe PDFVoir/Ouvrir
Titre: Local texture and geometry descriptors for fast block-based motion estimation of dynamic voxelized point clouds
Auteur(s): Dorea, Camilo Chang
Hung, Edson Mintsu
Queiroz, Ricardo Lopes de
metadata.dc.contributor.affiliation: Universidade de Brasília, Departamento de Ciência da Computação
Universidade de Brasília, Departamento de Engenharia Elétrica
Universidade de Brasília, Departamento de Ciência da Computação
Assunto:: Nuvem de pontos
Imagem tridimensional
Estimativa de movimento
Date de publication: 26-aoû-2019
Editeur: IEEE
Référence bibliographique: DOREA, Camilo; HUNG, Edson M.; QUEIROZ, Ricardo L. de. Local Texture and Geometry Descriptors for Fast Block-Based Motion Estimation of Dynamic Voxelized Point Clouds. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2019, Taipei, Taiwan: IEEE, 2019. p. 3721-3725, DOI: 10.1109/ICIP.2019.8803690.
Abstract: Motion estimation in dynamic point cloud analysis or compression is a computationally intensive procedure generally involving a large search space and often complex voxel matching functions. We present an extension and improvement on prior work to speed up block-based motion estimation between temporally adjacent point clouds. We introduce local, or block-based, texture descriptors as a complement to voxel geometry description. Descriptors are organized in an occupancy map which may be efficiently computed and stored. By consulting the map, a point cloud motion estimator may significantly reduce its search space while maintaining prediction distortion at similar quality levels. The proposed texture-based occupancy maps provide significant speedup, an average of 26.9% for the tested data set, with respect to prior work.
metadata.dc.description.unidade: Faculdade de Tecnologia (FT)
Departamento de Engenharia Elétrica (FT ENE)
Instituto de Ciências Exatas (IE)
Departamento de Ciência da Computação (IE CIC)
DOI: 10.1109/ICIP.2019.8803690
metadata.dc.relation.publisherversion: https://ieeexplore.ieee.org/document/8803690
Collection(s) :Trabalhos apresentados em evento

Affichage détaillé " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/47280/statistics">



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.