http://repositorio.unb.br/handle/10482/47280
Fichier | Description | Taille | Format | |
---|---|---|---|---|
SemTexto.pdf | 1,11 kB | Adobe PDF | Voir/Ouvrir |
Titre: | Local texture and geometry descriptors for fast block-based motion estimation of dynamic voxelized point clouds |
Auteur(s): | Dorea, Camilo Chang Hung, Edson Mintsu Queiroz, Ricardo Lopes de |
metadata.dc.contributor.affiliation: | Universidade de Brasília, Departamento de Ciência da Computação Universidade de Brasília, Departamento de Engenharia Elétrica Universidade de Brasília, Departamento de Ciência da Computação |
Assunto:: | Nuvem de pontos Imagem tridimensional Estimativa de movimento |
Date de publication: | 26-aoû-2019 |
Editeur: | IEEE |
Référence bibliographique: | DOREA, Camilo; HUNG, Edson M.; QUEIROZ, Ricardo L. de. Local Texture and Geometry Descriptors for Fast Block-Based Motion Estimation of Dynamic Voxelized Point Clouds. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2019, Taipei, Taiwan: IEEE, 2019. p. 3721-3725, DOI: 10.1109/ICIP.2019.8803690. |
Abstract: | Motion estimation in dynamic point cloud analysis or compression is a computationally intensive procedure generally involving a large search space and often complex voxel matching functions. We present an extension and improvement on prior work to speed up block-based motion estimation between temporally adjacent point clouds. We introduce local, or block-based, texture descriptors as a complement to voxel geometry description. Descriptors are organized in an occupancy map which may be efficiently computed and stored. By consulting the map, a point cloud motion estimator may significantly reduce its search space while maintaining prediction distortion at similar quality levels. The proposed texture-based occupancy maps provide significant speedup, an average of 26.9% for the tested data set, with respect to prior work. |
metadata.dc.description.unidade: | Faculdade de Tecnologia (FT) Departamento de Engenharia Elétrica (FT ENE) Instituto de Ciências Exatas (IE) Departamento de Ciência da Computação (IE CIC) |
DOI: | 10.1109/ICIP.2019.8803690 |
metadata.dc.relation.publisherversion: | https://ieeexplore.ieee.org/document/8803690 |
Collection(s) : | Trabalhos apresentados em evento |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.