Campo DC | Valor | Idioma |
dc.contributor.author | Dorea, Camilo Chang | - |
dc.contributor.author | Hung, Edson Mintsu | - |
dc.contributor.author | Queiroz, Ricardo Lopes de | - |
dc.date.accessioned | 2024-01-16T15:07:14Z | - |
dc.date.available | 2024-01-16T15:07:14Z | - |
dc.date.issued | 2019-08-26 | - |
dc.identifier.citation | DOREA, Camilo; HUNG, Edson M.; QUEIROZ, Ricardo L. de. Local Texture and Geometry Descriptors for Fast Block-Based Motion Estimation of Dynamic Voxelized Point Clouds. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2019, Taipei, Taiwan: IEEE, 2019. p. 3721-3725, DOI: 10.1109/ICIP.2019.8803690. | pt_BR |
dc.identifier.uri | http://repositorio2.unb.br/jspui/handle/10482/47280 | - |
dc.language.iso | eng | pt_BR |
dc.publisher | IEEE | pt_BR |
dc.rights | Acesso Restrito | pt_BR |
dc.title | Local texture and geometry descriptors for fast block-based motion estimation of dynamic voxelized point clouds | pt_BR |
dc.type | Trabalho apresentado em evento | pt_BR |
dc.subject.keyword | Nuvem de pontos | pt_BR |
dc.subject.keyword | Imagem tridimensional | pt_BR |
dc.subject.keyword | Estimativa de movimento | pt_BR |
dc.identifier.doi | 10.1109/ICIP.2019.8803690 | pt_BR |
dc.relation.publisherversion | https://ieeexplore.ieee.org/document/8803690 | pt_BR |
dc.description.abstract1 | Motion estimation in dynamic point cloud analysis or compression is a computationally intensive procedure generally involving a large search space and often complex voxel matching functions. We present an extension and improvement on prior work to speed up block-based motion estimation between temporally adjacent point clouds. We introduce local, or block-based, texture descriptors as a complement to voxel geometry description. Descriptors are organized in an occupancy map which may be efficiently computed and stored. By consulting the map, a point cloud motion estimator may significantly reduce its search space while maintaining prediction distortion at similar quality levels. The proposed texture-based occupancy maps provide significant speedup, an average of 26.9% for the tested data set, with respect to prior work. | pt_BR |
dc.contributor.affiliation | Universidade de Brasília, Departamento de Ciência da Computação | pt_BR |
dc.contributor.affiliation | Universidade de Brasília, Departamento de Engenharia Elétrica | pt_BR |
dc.contributor.affiliation | Universidade de Brasília, Departamento de Ciência da Computação | pt_BR |
dc.description.unidade | Faculdade de Tecnologia (FT) | pt_BR |
dc.description.unidade | Departamento de Engenharia Elétrica (FT ENE) | pt_BR |
dc.description.unidade | Instituto de Ciências Exatas (IE) | pt_BR |
dc.description.unidade | Departamento de Ciência da Computação (IE CIC) | pt_BR |
Aparece nas coleções: | Trabalhos apresentados em evento
|