Skip navigation
Veuillez utiliser cette adresse pour citer ce document : http://repositorio.unb.br/handle/10482/46883
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
Titre: Filling a gap in the taxonomy of phyllachoroid fungi : proposition of Neopolystigma, gen. nov., and the new family Neopolystigmataceae
Auteur(s): Guterres, Débora Cervieri
Santos, Maria do Desterro Mendes dos
Furlanetto, Cléber
Pinho, Danilo B.
Barreto, Robert W.
Dianese, José Carmine
metadata.dc.identifier.orcid: https://orcid.org/0000-0002-3902-8487
https://orcid.org/0000-0001-5435-6182
https://orcid.org/0000-0003-0575-0487
https://orcid.org/0000-0003-2624-302X
https://orcid.org/0000-0001-8920-4760
https://orcid.org/0000-0002-9100-0545
metadata.dc.contributor.affiliation: Universidade Federal de Viçosa, Departamento de Fitopatologia
Universidade de Brasília, Departamento de Ecologia
Universidade de Brasília, Departamento de Fitopatologia
Universidade de Brasília, Departamento de Fitopatologia
Universidade Federal de Viçosa, Departamento de Fitopatologia
Universidade de Brasília, Departamento de Fitopatologia
Assunto:: Fungos - cerrados
Taxonomia
Date de publication: 2022
Editeur: Taylor & Francis
Référence bibliographique: GUTERRES, Débora C. et al. Filling a gap in the taxonomy of phyllachoroid fungi: proposition of Neopolystigma, gen. nov., and the new family Neopolystigmataceae. Mycologia, [S. l.], v. 114, n. 5, 900-913, 2022. DOI: https://doi.org/10.1080/00275514.2022.2092365.
Abstract: Researchers and practitioners globally, from a range of perspectives, acknowledge the difficulty in determining the value of a financial asset. This subject is of utmost importance due to the numerous participants involved and its impact on enhancing market structure, function, and efficiency. This paper conducts a comprehensive review of the academic literature to provide insights into the reasoning behind certain conventions adopted in financial value estimation, including the implementation of preprocessing techniques, the selection of relevant inputs, and the assessment of the performance of computational models in predicting asset prices over time. Our analysis, based on 109 studies sourced from 10 databases, reveals that daily forecasts have achieved average error rates of less than 1.5%, while monthly data only attain this level in optimal circumstances. We also discuss the utilization of tools and the integration of hybrid models. Finally, we highlight compelling gaps in the literature that provide avenues for further research.
metadata.dc.description.unidade: Instituto de Ciências Biológicas (IB)
Departamento de Ecologia (IB ECL)
Departamento de Fitopatologia (IB FIT)
DOI: https://doi.org/10.1080/00275514.2022.2092365
metadata.dc.relation.publisherversion: https://www.tandfonline.com/doi/full/10.1080/00275514.2022.2092365
Collection(s) :Artigos publicados em periódicos e afins

Affichage détaillé " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/46883/statistics">



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.