Skip navigation
Veuillez utiliser cette adresse pour citer ce document : http://repositorio.unb.br/handle/10482/45002
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
Titre: Existence of least energy positive and nodal solutions for a quasilinear Schrödinger problem with potentials vanishing at infinity
Auteur(s): Figueiredo, Giovany de Jesus Malcher
Moreira Neto, Sandra
Ruviaro, Ricardo
metadata.dc.identifier.orcid: https://orcid.org/0000-0003-1697-1592
Assunto:: Schrödinger, Equação de
Equações quasilineares
Date de publication: 1-sep-2021
Editeur: AIP Publishing
Référence bibliographique: FIGUEIREDO, Giovany; MOREIRA NETO, Sandra; RUVIARO, Ricardo. Existence of least energy positive and nodal solutions for a quasilinear Schrödinger problem with potentials vanishing at infinity. Journal of Mathematical Physics, v. 62, n. 9, art. 091501, 2021. DOI 10.1063/5.0015513. Disponível em: https://aip.scitation.org/doi/full/10.1063/5.0015513. Acesso em: 05 out. 2022.
Abstract: In this paper, we prove the existence of at least two nontrivial solutions for a class of quasilinear problems with two non-negative and continuous potentials. Thanks to the geometries of these potentials, we are able to prove compact embeddings in some weighted Sobolev spaces, and by a minimization argument, we find a positive and a nodal (or sign-changing) (weak) solution with two nodal domains or that changes the sign exactly once in ℝ𝑁 for such problems. The nonlinearity in this problem satisfies suitable growth and monotonicity conditions, which allow this result to complement the classical results due to Liu, Wang, and Wang [Commun. Partial Differ. Equations 29, 879–901 (2004)].
metadata.dc.description.unidade: Instituto de Ciências Exatas (IE)
Departamento de Matemática (IE MAT)
DOI: https://doi.org/10.1063/5.0015513
Collection(s) :Artigos publicados em periódicos e afins

Affichage détaillé " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/45002/statistics">



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.