Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/45002
Arquivos associados a este item:
Não existem arquivos associados a este item.
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorFigueiredo, Giovany de Jesus Malcher-
dc.contributor.authorMoreira Neto, Sandra-
dc.contributor.authorRuviaro, Ricardo-
dc.date.accessioned2022-10-05T19:59:33Z-
dc.date.available2022-10-05T19:59:33Z-
dc.date.issued2021-09-01-
dc.identifier.citationFIGUEIREDO, Giovany; MOREIRA NETO, Sandra; RUVIARO, Ricardo. Existence of least energy positive and nodal solutions for a quasilinear Schrödinger problem with potentials vanishing at infinity. Journal of Mathematical Physics, v. 62, n. 9, art. 091501, 2021. DOI 10.1063/5.0015513. Disponível em: https://aip.scitation.org/doi/full/10.1063/5.0015513. Acesso em: 05 out. 2022.pt_BR
dc.identifier.urihttps://repositorio.unb.br/handle/10482/45002-
dc.language.isoInglêspt_BR
dc.publisherAIP Publishingpt_BR
dc.rightsAcesso Restritopt_BR
dc.titleExistence of least energy positive and nodal solutions for a quasilinear Schrödinger problem with potentials vanishing at infinitypt_BR
dc.typeArtigopt_BR
dc.subject.keywordSchrödinger, Equação dept_BR
dc.subject.keywordEquações quasilinearespt_BR
dc.identifier.doihttps://doi.org/10.1063/5.0015513pt_BR
dc.description.abstract1In this paper, we prove the existence of at least two nontrivial solutions for a class of quasilinear problems with two non-negative and continuous potentials. Thanks to the geometries of these potentials, we are able to prove compact embeddings in some weighted Sobolev spaces, and by a minimization argument, we find a positive and a nodal (or sign-changing) (weak) solution with two nodal domains or that changes the sign exactly once in ℝ𝑁 for such problems. The nonlinearity in this problem satisfies suitable growth and monotonicity conditions, which allow this result to complement the classical results due to Liu, Wang, and Wang [Commun. Partial Differ. Equations 29, 879–901 (2004)].pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0003-1697-1592pt_BR
dc.description.unidadeInstituto de Ciências Exatas (IE)pt_BR
dc.description.unidadeDepartamento de Matemática (IE MAT)pt_BR
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.