http://repositorio.unb.br/handle/10482/53806| Título: | Random dynamics of 3D stochastic retarded MHD-Voight equations driven by operator type noise |
| Autor(es): | Qiangheng, Zhang Freitas, Mirelson Martins |
| ORCID: | https://orcid.org/0000-0001-6942-3931 |
| Afiliação do autor: | Heze University, School of Mathematics and Statistics University of Brasília, Department of Mathematics |
| Assunto: | Decomposição espectral Semicontinuidade superior Ruído Equações diferenciais |
| Data de publicação: | 6-ago-2025 |
| Editora: | Elsevier |
| Referência: | QIANGHENG Zhang; FREITAS, Mirelson Martins. Random dynamics of 3D stochastic retarded MHD-Voight equations driven by operator type noise. Communications in Nonlinear Science and Numerical Simulation, v. 152, part B, e109204, 2025. DOI: https://doi.org/10.1016/j.cnsns.2025.109204. |
| Abstract: | In this paper, we study the existence, uniqueness and topological properties of pullback random attractors for the non-autonomous stochastic magnetohydrodynamics (MHD)-Voight equation with delays driven by operator type noise. First, we prove the existence, uniqueness and forward compactness of pullback random attractors. Second, we investigate the upper semi-continuity of pullback random attractors as the delay time tends to zero. Third, we consider the upper semi-continuity of pullback random attractors as the strength of noise approaches to zero. Finally, we show that the asymptotic autonomy of pullback random attractors as the time parameter goes to positive infinity. Since the solution of this equation has no higher regularity, we use the spectrum decomposition technique to prove the asymptotic compactness of the solution operator. It seems that this is the first time to study the random dynamics of the non-autonomous stochastic MHD-Voight equation with delays driven by Laplace-multiplier noise. |
| Unidade Acadêmica: | Instituto de Ciências Exatas (IE) Departamento de Matemática (IE MAT) |
| DOI: | https://doi.org/10.1016/j.cnsns.2025.109204 |
| Versão da editora: | https://www.sciencedirect.com/science/article/pii/S100757042500615X?via%3Dihub |
| Aparece nas coleções: | Artigos publicados em periódicos e afins |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.