Skip navigation
Veuillez utiliser cette adresse pour citer ce document : http://repositorio.unb.br/handle/10482/53806
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
Titre: Random dynamics of 3D stochastic retarded MHD-Voight equations driven by operator type noise
Auteur(s): Qiangheng, Zhang
Freitas, Mirelson Martins
metadata.dc.identifier.orcid: https://orcid.org/0000-0001-6942-3931
metadata.dc.contributor.affiliation: Heze University, School of Mathematics and Statistics
University of Brasília, Department of Mathematics
Assunto:: Decomposição espectral
Semicontinuidade superior
Ruído
Equações diferenciais
Date de publication: 6-aoû-2025
Editeur: Elsevier
Référence bibliographique: QIANGHENG Zhang; FREITAS, Mirelson Martins. Random dynamics of 3D stochastic retarded MHD-Voight equations driven by operator type noise. Communications in Nonlinear Science and Numerical Simulation, v. 152, part B, e109204, 2025. DOI: https://doi.org/10.1016/j.cnsns.2025.109204.
Abstract: In this paper, we study the existence, uniqueness and topological properties of pullback random attractors for the non-autonomous stochastic magnetohydrodynamics (MHD)-Voight equation with delays driven by operator type noise. First, we prove the existence, uniqueness and forward compactness of pullback random attractors. Second, we investigate the upper semi-continuity of pullback random attractors as the delay time tends to zero. Third, we consider the upper semi-continuity of pullback random attractors as the strength of noise approaches to zero. Finally, we show that the asymptotic autonomy of pullback random attractors as the time parameter goes to positive infinity. Since the solution of this equation has no higher regularity, we use the spectrum decomposition technique to prove the asymptotic compactness of the solution operator. It seems that this is the first time to study the random dynamics of the non-autonomous stochastic MHD-Voight equation with delays driven by Laplace-multiplier noise.
metadata.dc.description.unidade: Instituto de Ciências Exatas (IE)
Departamento de Matemática (IE MAT)
DOI: https://doi.org/10.1016/j.cnsns.2025.109204
metadata.dc.relation.publisherversion: https://www.sciencedirect.com/science/article/pii/S100757042500615X?via%3Dihub
Collection(s) :Artigos publicados em periódicos e afins

Affichage détaillé " class="statisticsLink btn btn-primary" href="/handle/10482/53806/statistics">



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.