Skip navigation
Please use this identifier to cite or link to this item: http://repositorio.unb.br/handle/10482/52392
Files in This Item:
File Description SizeFormat 
página em branco.pdf8,42 kBAdobe PDFView/Open
Title: Heuristic once learning for image & text duality information processing
Authors: Weigang, Li
Martins, Luiz
Ferreira, Nikson
Miranda, Christian
Althoff, Lucas
Pessoa, Walner
Farias, Mylenè
Jacobi, Ricardo
Rincon, Mauricio
metadata.dc.identifier.orcid: https://orcid.org/0000-0003-1826-1850
https://orcid.org/0000-0003-0089-3905
metadata.dc.contributor.affiliation: University of Brasilia, Department of Computer Science
University of Brasilia, Department of Computer Science
University of Brasilia, Department of Computer Science
University of Brasilia, Department of Computer Science
University of Brasilia, Department of Computer Science
University of Brasilia, Department of Computer Science
University of Brasilia, Department of Computer Science
University of Brasilia, Department of Computer Science
University of Brasilia, Department of Computer Science
Assunto:: Heurística
Rede Neurais Convolucionais (CNNs)
Visão computacional
Aprendizagem profunda
Imagem
Issue Date: Dec-2022
Publisher: IEEE
Citation: WEIGANG, Li et al. Heuristic once learning for image & text duality information processing. In: 2022 IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing & Communications, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicle (SmartWorld/UIC/ScalCom/DigitalTwin/PriComp/Meta), Haikou, p. 1353-1359, 2022. DOI: 10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00195. Disponível em: https://ieeexplore.ieee.org/document/10189581. Acesso em: 06 ago. 2025.
Abstract: Few-shot learning is an important mechanism to minimize the need for the labeling of large amounts of data and taking advantage of transfer learning. To identify image/text input with duality property, this research proposes a “Heuristic once learning (HOL)” mechanism to investigate multi-modal input processing similar to human-like behavior. First, we create an image/text data set of big Latin letters composed of small letters and another data set composed of Arabic, Chinese and Roman numerals. Secondly, we use Convolutional Neural Networks (CNN) for pre-training the dataset of letters to get structural features. Thirdly, using the acquired knowledge, a Self-organizing Map (SOM) and Contrastive Language-Image Pretraining (CLIP) are tested separately using zero-shot learning. Siamese Networks and Vision Transformer (ViT) are also tested using one-shot learning by knowledge transfer to identify the features of unknown characters. The research results show the potential and challenges to realize HOL and make a useful attempt for the development of general agents.
metadata.dc.description.unidade: Instituto de Ciências Exatas (IE)
Departamento de Ciência da Computação (IE CIC)
metadata.dc.description.ppg: Programa de Pós-Graduação em Informática
Licença:: Copyright © 2022, IEEE. Fonte: https://s100.copyright.com/AppDispatchServlet?publisherName=ieee&publication=proceedings&title=Heuristic+Once+Learning+for+Image+%26amp%3B+Text+Duality+Information+Processing&isbn=979-8-3503-4655-8&publicationDate=December+2022&author=Li+Weigang&ContentID=10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00195&orderBeanReset=true&startPage=1353&endPage=1359&proceedingName=2022+IEEE+Smartworld%2C+Ubiquitous+Intelligence+%26+Computing%2C+Scalable+Computing+%26+Communications%2C+Digital+Twin%2C+Privacy+Computing%2C+Metaverse%2C+Autonomous+%26+Trusted+Vehicles+%28SmartWorld%2FUIC%2FScalCom%2FDigitalTwin%2FPriComp%2FMeta%29. Acesso em: 06 ago. 2025.
DOI: 10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00195
metadata.dc.relation.publisherversion: https://ieeexplore.ieee.org/document/10189581/figures#figures
Appears in Collections:Artigos publicados em periódicos e afins

Show full item record " class="statisticsLink btn btn-primary" href="/handle/10482/52392/statistics">



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.