Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/52392
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
página em branco.pdf8,42 kBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorWeigang, Li-
dc.contributor.authorMartins, Luiz-
dc.contributor.authorFerreira, Nikson-
dc.contributor.authorMiranda, Christian-
dc.contributor.authorAlthoff, Lucas-
dc.contributor.authorPessoa, Walner-
dc.contributor.authorFarias, Mylenè-
dc.contributor.authorJacobi, Ricardo-
dc.contributor.authorRincon, Mauricio-
dc.date.accessioned2025-08-13T22:12:33Z-
dc.date.available2025-08-13T22:12:33Z-
dc.date.issued2022-12-
dc.identifier.citationWEIGANG, Li et al. Heuristic once learning for image & text duality information processing. In: 2022 IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing & Communications, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicle (SmartWorld/UIC/ScalCom/DigitalTwin/PriComp/Meta), Haikou, p. 1353-1359, 2022. DOI: 10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00195. Disponível em: https://ieeexplore.ieee.org/document/10189581. Acesso em: 06 ago. 2025.pt_BR
dc.identifier.urihttp://repositorio.unb.br/handle/10482/52392-
dc.language.isoengpt_BR
dc.publisherIEEEpt_BR
dc.rightsAcesso Restritopt_BR
dc.titleHeuristic once learning for image & text duality information processingpt_BR
dc.typeTrabalho apresentado em eventopt_BR
dc.subject.keywordHeurísticapt_BR
dc.subject.keywordRede Neurais Convolucionais (CNNs)pt_BR
dc.subject.keywordVisão computacionalpt_BR
dc.subject.keywordAprendizagem profundapt_BR
dc.subject.keywordImagempt_BR
dc.rights.licenseCopyright © 2022, IEEE. Fonte: https://s100.copyright.com/AppDispatchServlet?publisherName=ieee&publication=proceedings&title=Heuristic+Once+Learning+for+Image+%26amp%3B+Text+Duality+Information+Processing&isbn=979-8-3503-4655-8&publicationDate=December+2022&author=Li+Weigang&ContentID=10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00195&orderBeanReset=true&startPage=1353&endPage=1359&proceedingName=2022+IEEE+Smartworld%2C+Ubiquitous+Intelligence+%26+Computing%2C+Scalable+Computing+%26+Communications%2C+Digital+Twin%2C+Privacy+Computing%2C+Metaverse%2C+Autonomous+%26+Trusted+Vehicles+%28SmartWorld%2FUIC%2FScalCom%2FDigitalTwin%2FPriComp%2FMeta%29. Acesso em: 06 ago. 2025.pt_BR
dc.identifier.doi10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00195pt_BR
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/10189581/figures#figurespt_BR
dc.description.abstract1Few-shot learning is an important mechanism to minimize the need for the labeling of large amounts of data and taking advantage of transfer learning. To identify image/text input with duality property, this research proposes a “Heuristic once learning (HOL)” mechanism to investigate multi-modal input processing similar to human-like behavior. First, we create an image/text data set of big Latin letters composed of small letters and another data set composed of Arabic, Chinese and Roman numerals. Secondly, we use Convolutional Neural Networks (CNN) for pre-training the dataset of letters to get structural features. Thirdly, using the acquired knowledge, a Self-organizing Map (SOM) and Contrastive Language-Image Pretraining (CLIP) are tested separately using zero-shot learning. Siamese Networks and Vision Transformer (ViT) are also tested using one-shot learning by knowledge transfer to identify the features of unknown characters. The research results show the potential and challenges to realize HOL and make a useful attempt for the development of general agents.pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0003-1826-1850pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0003-0089-3905pt_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Computer Sciencept_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Computer Sciencept_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Computer Sciencept_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Computer Sciencept_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Computer Sciencept_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Computer Sciencept_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Computer Sciencept_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Computer Sciencept_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Computer Sciencept_BR
dc.description.unidadeInstituto de Ciências Exatas (IE)pt_BR
dc.description.unidadeDepartamento de Ciência da Computação (IE CIC)pt_BR
dc.description.ppgPrograma de Pós-Graduação em Informáticapt_BR
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.