Skip navigation
Please use this identifier to cite or link to this item: http://repositorio.unb.br/handle/10482/7531
Files in This Item:
File Description SizeFormat 
2010_VirginiaCarlaOliveira.pdf3,9 MBAdobe PDFView/Open
Title: A ação de proteínas virais supressoras de silenciamento gênico na patogenicidade de um Baculovírus
Authors: Oliveira, Virgínia Carla
Orientador(es):: Resende, Renato de Oliveira
Ribeiro, Bergmann Morais
Assunto:: Baculoviroses
Microbiologia molecular
Bioinseticida
Issue Date: 29-Apr-2011
Citation: OLIVEIRA, Virgínia Carla. A ação de proteínas virais supressoras de silenciamento gênico na patogenicidade de um Baculovírus. 2010. 267 f. Tese (Doutorado em Biologia Molecular)-Universidade de Brasília, Brasília, 2010.
Abstract: O silenciamento gênico, ou RNA de interferência (RNAi), atua como um mecanismo de defesa contra infecções virais em organismos eucarióticos. Ao longo da evolução, os vírus adquiriram proteínas específicas com a capacidade de suprimir o silenciamento de RNA em diferentes pontos do processo. Como por exemplo, as proteínas AC2 de begomovírus, NS1 do vírus da gripe (Influenza A) e NSs de um tospovírus (Tomato spotted wilt virus - TSWV). Neste estudo, pretendeu-se induzir mecanismos de supressão de silenciamento gênico através da expressão heteróloga de AC2, NS1 e NSs por baculovírus AcMNPV – Autographa californica multiple nucleopolyhedrovirus, a fim de analisar o efeito na replicação viral em diferentes células de inseto. Assim, no primeiro capítulo, foi feita uma revisão sobre o silenciamento gênico, a ação de proteínas virais supressoras de RNAi e o uso potencial de baculovírus recombinantes como agentes bioinseticidas melhorados. O segundo capítulo descreve a clonagem dos genes AC2, NS1 e NSs, a construção dos baculovírus recombinantes (vAcAC2, vAcNS1 e vAcNSs) e os ensaios preliminares de infecção em célula e em larvas de inseto. Nesses ensaios, o vAcNSs (contendo o gene NSs) foi o recombinante com maior influência na replicação do baculovírus selvagem AcMNPV. Por sua vez, o terceiro capítulo relata a ação da proteína supressora de silenciamento NSs de TSWV, expressa pelo baculovírus vAcNSs, em três linhagens hospedeiras: uma permissiva, derivada de Trichoplusia ni (BTI-Tn-5B1-4); outra semipermissiva, derivada de Anticarsia gemmatalis (UFL-AG-286); e, uma linhagem não-permissiva, derivada de Bombyx mori (BM-5). Os resultados mostraram que vAcNSs, em células semipermissivas, obteve maior eficiência na replicação quando comparado ao selvagem, pois produziu mais vírus extracelulares; em uma linhagem celular não-permissiva, causou efeito citopático, enquanto a infecção com o tipo selvagem AcMNPV não provocou nenhuma alteração morfológica; aumentou a produção de poliedros do baculovírus tipo selvagem em todas as linhagens de células testadas; aumentou fortemente a expressão da proteína fluorescente verde (EGFP) nas células semipermissivas e em hemócitos de A. gemmatalis quando co-infectado com um AcMNPV recombinante contendo o gene egfp. A análise de microscopia confocal revelou que a NSs acumulou em abundância no citoplasma de células permissivas e semipermissivas. Em contraste, a NSs foi detectada no núcleo da célula não-permissiva. A ausência de moléculas curtas de RNA (siRNA) de transcritos de egfp em linhagens semipermissivas e permissivas indica atividade de supressão do silenciamento gênico. Por outro lado, vAcNSs não suprimiu o RNAi na linhagem celular nãopermissiva. Por fim, o quarto capítulo investiga a ação bioinseticida do baculovírus vAcNSs em larvas de Spodoptera frugiperda e Anticarsia gemmatalis - um hospedeiro permissivo e outro semi-permissivo, respectivamente. Não houve diferença estatisticamente significativa entre a DL50 do vAcNSs para S. frugiperda e A. gemmatalis, quando comparada à DL50 observada para o tipo selvagem AcMNPV. Entretanto, o TL50 foi significativamente diferente, com valores menores para vAcNSs em S. frugiperda [5,62 dias com 1 p.f.u. e 4,82 dias com 105 p.f.u.] e em A. gemmatalis [7,46 dias com 1 p.f.u. e 3,2 dias com 105 p.f.u.] quando em comparação com o TL50 do AcMNPV em S. frugiperda [8,5 dias com 1 p.f.u. e 7,52 dias com 105 p.f.u.] e em A. gemmatalis [20,11 dias com 1 p.f.u. e 7,34 dias com 105 p.f.u.]. Estes resultados corroboram os dados observados in vitro, indicando que a proteína NSs de TSWV aumenta a replicação do baculovírus e pode contribuir para gerar bioinseticidas mais eficientes. ______________________________________________________________________________ ABSTRACT
Gene silencing, or RNA interference (RNAi), works as a eukaryotic defense mechanism against viral infections. During evolutionary time viruses acquired specific proteins, which are able to halt the silencing process in different steps of its biochemical pathway e.g. the AC2 protein from Begomovirus, the NS1 protein from influenza (Influenza A) and the NSs protein from Tomato spotted wilt virus (TSWV). In this study we sought generation and evaluation of the gene-silencing suppression effect of three different genes, AC2 from begomovirus, NS1 from Influenza A and NSs from TSWV, via heterologous expression by recombinant Autographa californica multiple nucleopolyhedrovirus (AcMNPV, genus Alphabaculovirus, family Baculoviridae) in different insect cell lines. In the first chapter, a review concerning gene silencing, suppression of gene silencing by viral proteins and the potential use of recombinant baculovirus as bio-insecticidal agents suitable for biological control is presented. The second chapter describes the cloning strategies designed for the construction of recombinant baculoviruses carrying the AC2, NS1 and NSs genes (vAcAC2, vAcNS1 and vAcNSs, respectively) as well as the results of preliminary insect cell infection assays. In these preliminary assays, vAcNSs had more influence on wild type AcMNPV replication than vAcAC2 and vAcNS1. The third chapter shows the effect of the protein NSs from TSWV on virus replication in different host insect cell lines: one permissive, Trichoplusia ni (BTI-Tn-5B1-4); other semi-permissive, Anticarsia gemmatalis (UFL-AG-286); and a non-permissive cell line, Bombyx mori (BM-5). Results showed that infection of the semi-permissive cell line by vAcNSs was more efficient than infection by wild type AcMNPV, since production of budded virus was higher. In the non-permissive cell line, vAcNSs was able to produce cytopathic effects whereas no morphological alteration was found when wild type AcMNPV was inoculated. When vAcNSs and wild type AcMNPV were co-inoculated, production of polyhedra was enhanced despite the insect cell line used. Co-infection of vAcNSs and a recombinant AcMNPV carrying the egfp gene was also evaluated. In the semi-permissive cell line and in A. gemmatalis hemocytes (permissive cell line) co-infection greatly increased enhanced green fluorescent protein (EGFP) expression. Northern blotting assays showed absence of small interfering RNA (siRNA) molecules associated to egfp transcripts in the permissive and semi-permissive cell lines, which indicates suppression of gene silencing activity by the NSs protein. On the other hand, vAcNSs was not able to suppress the siRNA production in the non-permissive cell line. Confocal microscopy analysis showed that the NSs protein accumulated abundantly in the cytoplasm of permissive and semipermissive infected cells. In contrast, high amounts of NSs were detected in the nuclei of nonpermissive cells. Finally, chapter four presents the study of the bio-insecticidal activity of vAcNSs on Spodoptera frugiperda and Anticarsia gemmatalis larvae, a permissive and semipermissive host, respectively. The vAcNSs LD50 for S. frugiperda and A. gemmatalis was not statistically different from wild-type AcMNPV. However, the LT50 values were significantly smaller for vAcNSs in S. frugiperda [5.62 days with 1 p.f.u. and 4.82 days with 105 p.f.u.] and A. gemmatalis [7.46 days with 1 p.f.u. and 3.20 days with 105 p.f.u.) when compared to the LT50 for AcMNPV in S. frugiperda [8.5 days with 1 p.f.u. and 7.52 days with 105 p.f.u.] and A. gemmatalis [20.11 days with 1 p.f.u. and 7.34 days with 105 p.f.u.]. These in vivo results are in accordance with the data observed in vitro indicating that the protein NSs from TSWV could efficiently improve baculovirus replication and be used to generate more effective bioinsecticides.
Description: Tese (doutorado)—Universidade de Brasília, Departamento de Biologia Celular, 2010.
Appears in Collections:Teses, dissertações e produtos pós-doutorado

Show full item record " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/7531/statistics">



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.