Skip navigation
Please use this identifier to cite or link to this item: http://repositorio.unb.br/handle/10482/47710
Files in This Item:
There are no files associated with this item.
Title: Random iterations of maps on Rk: asymptotic stability, synchronisation and functional central limit theorem
Authors: Matias, Edgar
Silva, Eduardo Antônio da
metadata.dc.identifier.orcid: https://orcid.org/0000-0002-3945-3272
https://orcid.org/0000-0002-1677-2705
metadata.dc.contributor.affiliation: Universidade Federal da Bahia, Departamento de Matemática
Universidade de Brasília, Departamento de Matemática
Assunto:: Teorema central do limite
Sistema dinâmico aleatório
Issue Date: 3-Mar-2021
Publisher: IOP Publishing Ltd & London Mathematical Society
Citation: MATIAS, Edgar; SILVA, Eduardo. Random iterations of maps on Rk: asymptotic stability, synchronisation and functional central limit theorem. Nonlinearity, London, v. 34, n. 3, 1577-1597, 2021. DOI: https://doi.org/10.1088/1361-6544/abe17b.
Abstract: We study independent and identically distributed random iterations of continuous maps defined on a connected closed subset S of the Euclidean space Rk. We assume the maps are monotone (with respect to a suitable partial order) and a ‘topological’ condition on the maps. Then, we prove the existence of a pullback random attractor whose distribution is the unique stationary measure of the random iteration, and we obtain the synchronisation of random orbits. As a consequence of the synchronisation phenomenon, a functional central limit theorem is established.
metadata.dc.description.unidade: Instituto de Ciências Exatas (IE)
Departamento de Matemática (IE MAT)
DOI: https://doi.org/10.1088/1361-6544/abe17b
metadata.dc.relation.publisherversion: https://iopscience.iop.org/article/10.1088/1361-6544/abe17b
Appears in Collections:Artigos publicados em periódicos e afins

Show full item record " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/47710/statistics">



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.