Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.unb.br/handle/10482/46417
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Título : On a defocusing quasilinear Schrödinger equation with singular term
Autor : Yang, Minbo
Santos, Carlos Alberto Pereira dos
Ubilla, Pedro
Zhou, Jiazheng
metadata.dc.contributor.email: mailto:mbyang@zjnu.edu.cn
mailto:csantos@unb.br
mailto:pedro.ubilla@usach.cl
mailto:zhou@mat.unb.br
metadata.dc.identifier.orcid: https://orcid.org/my-orcid?orcid=0000-0003-2182-7499
Assunto:: Schrödinger, Equação de
Grupos críticos
Teorias não-lineares
Fecha de publicación : ene-2023
Editorial : American Institute of Mathematical Sciences
Citación : YANG, Minbo et. al. On a defocusing quasilinear Schrödinger equation with singular term. Discrete and continuous dynamical systems, v. 43, n. 1, p. 507-536, jan. 2023. DOI 10.3934/dcds.2022158. Disponível em: https://www.aimsciences.org/article/doi/10.3934/dcds.2022158. Acesso em: 29 ago. 2023.
Abstract: We consider a class of modified quasilinear Schr¨odinger equations −∆u + k 2 u∆u 2 + V (x)u = λa(x)u −α + b(x)u β in R N , where N ≥ 3, V is a suitable non-negative continuous potential; a, b are bounded mensurable functions, 0 < α < 1 < β ≤ 2 ∗ − 1 and k, λ ≥ 0 are two parameters. We establish global existence and local multiplicity results of positive solutions in H1 (RN ) ∩ L∞(RN ) for the equation with appropriate classes of parameters α, β and coefficients a(x), b(x)
metadata.dc.description.unidade: Instituto de Ciências Exatas (IE)
Departamento de Matemática (IE MAT)
DOI: 10.3934/dcds.2022158
metadata.dc.relation.publisherversion: https://www.aimsciences.org/article/doi/10.3934/dcds.2022158
Agência financiadora: UnB - Edital DPI/DPG n. 02/2022
Aparece en las colecciones: Artigos publicados em periódicos e afins

Mostrar el registro Dublin Core completo del ítem " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/46417/statistics">



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.