http://repositorio.unb.br/handle/10482/44999
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
ARTIGO_SubSupersolutionMethod.pdf | 1,66 MB | Adobe PDF | Visualizar/Abrir |
Título : | The sub-supersolution method for a nonhomogeneous elliptic equation involving Lebesgue generalized spaces |
Autor : | Figueiredo, Giovany de Jesus Malcher Razani, Abdolrahman |
metadata.dc.contributor.email: | mailto:giovany@unb.br mailto:razani@sci.ikiu.ac.ir |
metadata.dc.identifier.orcid: | https://orcid.org/0000-0003-1697-1592 https://orcid.org/0000-0002-3092-3530 |
Assunto:: | Equação elíptica Espaços de Lebesgue |
Fecha de publicación : | 20-dic-2021 |
Editorial : | Springer Nature |
Citación : | FIGUEIREDO, Giovany M.; RAZANI, A. The sub-supersolution method for a nonhomogeneous elliptic equation involving Lebesgue generalized spaces. Boundary Value Problems, n. 105, 2021. DOI 10.1186/s13661-021-01580-z. Disponível em: https://boundaryvalueproblems.springeropen.com/articles/10.1186/s13661-021-01580-z. Acesso em: 04 out. 2022. |
Abstract: | In this paper, a nonhomogeneous elliptic equation of the form –A(x,|u|Lr(x)) div(a(|∇u| p(x) )|∇u| p(x)–2∇u) = f(x, u)|∇u| α(x) Lq(x) + g(x, u)|∇u| γ (x) Ls(x) on a bounded domain in RN (N > 1) with C2 boundary, with a Dirichlet boundary condition is considered. Using the sub-supersolution method, the existence of at least one positive weak solution is proved. As an application, the existence of at least one solution of a generalized version of the logistic equation and a sublinear equation are shown. |
Licença:: | Boundary Value Problems - Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. Fonte: https://boundaryvalueproblems.springeropen.com/articles/10.1186/s13661-021-01580-z#rightslink. Acesso em: 04 out. 2022. |
DOI: | https://doi.org/10.1186/s13661-021-01580-z |
Aparece en las colecciones: | Artigos publicados em periódicos e afins |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.