Skip navigation
Veuillez utiliser cette adresse pour citer ce document : http://repositorio.unb.br/handle/10482/42844
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
Titre: Body sensor network : a self-adaptive system exemplar in the healthcare domain
Auteur(s): Gil, Eric Bernd
Caldas, Ricardo Diniz
Rodrigues, Arthur
Silva, Gabriel Levi Gomes da
Rodrigues, Genaína Nunes
Pelliccione, Patrizio
Assunto:: Sensores
Assistência médica
Sistemas de informação
Sistemas operacionais (Computadores)
Monitoramento de pacientes
Robôs - programação
Date de publication: jui-2021
Editeur: IEEE
Référence bibliographique: GIL, Eric Bernd et al. Body sensor network: a self-adaptive system exemplar in the healthcare domain. In: INTERNACIONAL SYMPOSIUM ON SOFTWARE ENGINEERING FOR ADAPTATIVE AND SELF-MANAGING SYSTEMS (SEAMS), 2021, [S.l.]. Proceedings [...]. [S.l]: IEEE Computer Society, 2021. p. 224-230. DOI: http://doi.org/10.1109/SEAMS51251.2021.00037. Disponível em: https://ieeexplore.ieee.org/document/9462020. Acesso em: 09 fev. 2021.
Abstract: Recent worldwide events shed light on the need of human-centered systems engineering in the healthcare domain. These systems must be prepared to evolve quickly but safely, according to unpredicted environments and ever-changing pathogens that spread ruthlessly. Such scenarios suffocate hospitals' infrastructure and disable healthcare systems that are not prepared to deal with unpredicted environments without costly re-engineering. In the face of these challenges, we offer the SA-BSN - Self-Adaptive Body Sensor Network - prototype to explore the rather dynamic patient's health status monitoring. The exemplar is focused on self-adaptation and comes with scenarios that hinder an interplay between system reliability and battery consumption that is available after each execution. Also, we provide: (i) a noise injection mechanism, (ii) file-based patient profiles' configuration, (iii) six healthcare sensor simulations, and (iv) an extensible/reusable controller implementation for self-adaptation. The artifact is implemented in ROS (Robot Operating System), which embraces principles such as ease of use and relies on an active open source community support.
metadata.dc.description.unidade: Instituto de Ciências Exatas (IE)
Departamento de Ciência da Computação (IE CIC)
Licença:: © Copyright 2022 IEEE - All rights reserved.
DOI: http://doi.org/10.1109/SEAMS51251.2021.00037
metadata.dc.relation.publisherversion: https://ieeexplore.ieee.org/document/9462020
Collection(s) :Trabalhos apresentados em evento

Affichage détaillé " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/42844/statistics">



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.