http://repositorio.unb.br/handle/10482/37841
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2019_JoséOniramdeAquinoLimaverdeFilho.pdf | 5,39 MB | Adobe PDF | Visualizar/Abrir |
Título : | Estimação adaptativa para sistemas não-lineares em malha fechada e teoria de planicidade diferencial |
Otros títulos : | Adaptive estimation for nonlinear closed loop systems and differential flatness theory |
Autor : | Limaverde Filho, José Oniram de Aquino |
Orientador(es):: | Fortaleza, Eugênio Liborio Feitosa |
Assunto:: | Filtro de Kalman Controle não-linear Entradas planas Estimação de estados Média móvel exponencial |
Fecha de publicación : | 21-may-2020 |
Data de defesa:: | 28-ago-2019 |
Citación : | LIMAVERDE FILHO, José Oniram de Aquino. Estimação adaptativa para sistemas não-lineares em malha fechada e teoria de planicidade diferencial. 2019. vii, 93 f., il. Tese (Doutorado em Sistemas Mecatrônicos)—Universidade de Brasília, Brasília, 2019. |
Resumen : | O projeto de sistemas de controle representa um dos campos mais ativos de pesquisa devido às diversas aplicações, em especial, nas engenharias. Uma típica abordagem da teoria de controle em sistemas modernos consiste na análise da evolução temporal dos estados do sistema, os quais, na prática, nem sempre são possíveis de medir através de mecanismos físicos. Com isto, é cada vez mais notória a utilização do filtro de Kalman e suas extensões, tornando-se o mais famoso dos algoritmos para estimação de estados. Entretanto, o caráter ótimo do filtro de Kalman está altamente relacionado a determinadas hipóteses, dentre elas a linearidade do sistema e o conhecimento prévio das matrizes de covariância dos ruídos que agem sob a planta. Dentro desse contexto, esta tese de doutorado propõe metodologias de estimação adaptativa para sistemas não-lineares em malha fechada baseadas no filtro de Kalman e na teoria de planicidade diferencial com o objetivo de lidar tanto com o completo desconhecimento da matriz de covariância do ruído de processo quanto considerar a influência do vetor de estimativas de estado no sinal de controle. A partir de simulações numéricas, ilustrou-se o desempenho em malha fechada das metodologias propostas nesta tese para um conjunto diversificado de sistemas dinâmicos. Graças à estimação e atualização em tempo real da matriz de covariância do ruído de processo, vislumbrou se uma contribuição favorável dessas metodologias no que se diz respeito ao rastreio das referências especificadas e à redução dos níveis de esforços nos atuadores. |
Abstract: | Control system design represents one of the most active fields of research due to its diverse applications, especially in engineering. A typical control theory approach in modern systems corresponds to the analysis of the temporal evolution of system states, which in practice are not always possible to be measured through physical mechanisms. In line with this, the use of the Kalman filter and its extensions is becoming more noticeable, making it the most famous state estimation algorithm. However, its optimality is highly related to certain hypotheses, among them the system linearity and the a priori knowledge of the noise statistics. Within this context, this doctoral thesis proposes adaptive estimation methods for nonlinear closed-loop systems based on Kalman filtering and differential flatness theory to deal with the cases where the process noise covariance is unknown. The main goal is to implement an adaptive estimation of the process noise covariance that considers the influence of the state vector estimates on the control signal. From numerical simulations, the closed-loop performance of the methodologies proposed in this manuscript was illustrated for a diverse set of dynamic systems. Due to the real-time estimation and updating of the process noise covariance matrix, a favorable contribution of these methodologies was observed regarding the tracking of the specified references and the reduction of the effort levels in the actuators. |
metadata.dc.description.unidade: | Faculdade de Tecnologia (FT) Departamento de Engenharia Mecânica (FT ENM) |
Descripción : | Tese (doutorado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2019. |
metadata.dc.description.ppg: | Programa de Pós-Graduação em Sistemas Mecatrônicos |
Licença:: | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. |
Agência financiadora: | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). |
Aparece en las colecciones: | Teses, dissertações e produtos pós-doutorado |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.