Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.unb.br/handle/10482/29881
Ficheros en este ítem:
Fichero Tamaño Formato  
ARTIGO_ElementosGeometriaRiemaniana.pdf1,75 MBAdobe PDFVisualizar/Abrir
Título : Elementos de geometria Riemaniana : análise da esfera S2
Otros títulos : Topics of Riemannian geometry : sphere S2 analysis
Autor : Amorim, Ronni Geraldo Gomes de
Ulhoa, Sérgio Costa
Rocha, Paulo Magalhães Marciano da
Paiva, Rendisley Aristóteles dos Santos
Assunto:: Geometria riemaniana
Relatividade (Física)
Fecha de publicación : abr-2015
Editorial : Sociedade Brasileira de Física
Citación : AMORIM, R. G. G. et al. Elementos de geometria Riemaniana: análise da esfera S2. Revista Brasileira de Ensino de Física, São Paulo, v. 37, n. 2, p. 2302-1-2302-9, abr./jun. 2015. Disponível em: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172015000200003&lng=en&nrm=iso>. Acesso em: 29 mar. 2018. doi: http://dx.doi.org/10.1590/S1806-11173721687
Resumen : Este artigo se propõe a expor conceitos de geometria riemanniana e aplicá-los a uma esfera em duas dimensões, a esfera S2, que é a variedade riemanniana mais simples de construir. Assim, esse artigo visa dar subsídios suficientes aos estudantes de graduação em Física para que eles compreendam tais conceitos de geometria com o propósito de facilitar o estudo da teoria da relatividade geral. Da mesma forma, este artigo atende às necessidades de professores do Ensino Médio que queiram transpor didaticamente a geometria riemanniana a fim de ensinar os avanços obtidos no campo aos estudantes do Ensino Básico. Nesse sentido, introduzimos conceitos básicos como curvatura e construímos a variedade S2, mostrando que a sua curvatura não é zero. Isso ilustra o arcabouço teórico da relatividade geral pois mostra como conceitos familiares da geometria euclidiana são alterados. Como exemplo mostramos como o teorema de Pitágoras é construído na variedade S2.
Abstract: This article presents concepts of Riemannian geometry and apply them to a two-dimensional sphere, the sphere S2, which is the simplest Riemannian manifold. Thus this article is intended to give enough subsidies to undergraduate students of physics to understand such concepts of geometry in order to facilitate the study of the general relativity. Similarly, this article is suitable to high school teachers who want to use basics concepts of Riemannian geometry to talk about the progress made in the field. In this sense, we introduce the curvature and define the manifold S2, showing that its curvature is not zero. This illustrates the theoretical framework of general relativity and it shows how the familiar concepts in Euclidian geometry change when the geometry is expanded. As an example we show how the Pythagorean theorem is built on this manifold.
metadata.dc.description.unidade: Faculdade UnB Gama (FGA)
Licença:: Revista Brasileira de Ensino de Física - Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons (CC BY 4.0). Fonte: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172015000200003&lng=en&nrm=iso. Acesso em: 29 mar. 2018.
DOI: http://dx.doi.org/10.1590/S1806-11173721687
Aparece en las colecciones: Artigos publicados em periódicos e afins

Mostrar el registro Dublin Core completo del ítem " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/29881/statistics">



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.