http://repositorio.unb.br/handle/10482/14706
Fichier | Description | Taille | Format | |
---|---|---|---|---|
2013_ThiagoRegoSousa.pdf | 2,36 MB | Adobe PDF | Voir/Ouvrir |
Titre: | Modelos combinados AR-GARCH governados por distribuições estáveis |
Auteur(s): | Sousa, Thiago do Rêgo |
Orientador(es):: | Guevara Otiniano, Cira Etheowalda |
Coorientador(es):: | Lopes, Sílvia Regina Costa |
Assunto:: | Distribuição (Probabilidades) Expoentes de Lyapunov |
Date de publication: | 26-nov-2013 |
Data de defesa:: | 26-jui-2013 |
Référence bibliographique: | SOUSA, Thiago do Rêgo. Modelos combinados AR-GARCH governados por distribuições estáveis. 2013. ii, 159 f., il. Dissertação (Mestrado em Estatística)—Universidade de Brasília, Brasília, 2013. |
Résumé: | Neste trabalho estendemos a aplicação do modelo combinado AR-GARCH governado por distribuições GEV e apresentado por Zhao et. al. (2011) para um modelo governado por distribuições estáveis, já que estas distribuições podem ser utilizadas para modelar dados de finanças, incluindo os eventos extremos. Além de estimação pelo método Bayesiano explorada por Zhao et. al. (2011), estimamos ambos os modelos também com o método clássico da máxima verossimilhança. Posteriormente investigamos as condições de estacionariedade de um modelo ARMA-power-GARCH com inovações estáveis proposto por Rachev et. al. (2002) e estendemos este modelo derivando as condições de estacionariedade para um modelo assimétrico ARMA-APARCH com inovações estáveis. Esta última generalização nos permitiu implementar uma rotina numérica de estimação de modelos ARMA-APARCH que, ao contrário da conhecida rotina fGARCH apresentada por Wurtz et. al. (2006) estima modelos ARMA-APARCH com distribuição condicional GEV ou estável. ______________________________________________________________________________ ABSTRACT We extend the application of the GEV-GARCH model given by Zhao et al. (2011) to a model driven by stable distibuitons as they share some similarities in modelling nancial data, including extreme events. We perform both Maximum likelihood and Bayesian estimation of these models. Thereafter, we investigate the stationarity conditions of the ARMA-power-GARCH model with stable innovations proposed by Rachev et. al. (2002) and prove the stationarity conditions for the assymetric model ARMA-APARCH with stable innovations. The last result allowed us to construct a numerical routine to estimate the paramters of an ARMA-APARCH model following stable and GEV distributions. |
metadata.dc.description.unidade: | Instituto de Ciências Exatas (IE) Departamento de Estatística (IE EST) |
Description: | Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Estatística, 2013. |
metadata.dc.description.ppg: | Programa de Pós-Graduação em Estatística |
Licença:: | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. |
Collection(s) : | Teses, dissertações e produtos pós-doutorado |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.