Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.unb.br/handle/10482/54051
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
ARTIGO_LightweightEnhancedModel.pdf7,99 MBAdobe PDFVisualizar/Abrir
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorLima, Bruno Pinheiro de Melo-
dc.contributor.authorBorges, Lurdineide de Araújo Barbosa-
dc.contributor.authorHirose, Edson-
dc.contributor.authorBorges, Díbio Leandro-
dc.date.accessioned2026-02-12T20:24:32Z-
dc.date.available2026-02-12T20:24:32Z-
dc.date.issued2024-02-27-
dc.identifier.citationLIMA, Bruno Pinheiro de Melo; BORGES, Lurdineide de Araújo Barbosa; HIROSE, Edson; BORGES, Díbio Leandro. A lightweight and enhanced model for detecting the Neotropical brown stink bug, Euschistus heros (Hemiptera: Pentatomidae) based on YOLOv8 for soybean fields. Ecological Informatics, [S.l.], v. 80, e102543, 2024. DOI: https://doi.org/10.1016/j.ecoinf.2024.102543. Disponível em: https://www.sciencedirect.com/science/article/pii/S1574954124000852?via%3Dihub. Acesso em: 12 fev. 2026.pt_BR
dc.identifier.urihttp://repositorio.unb.br/handle/10482/54051-
dc.language.isoengpt_BR
dc.publisherElsevierpt_BR
dc.rightsAcesso Abertopt_BR
dc.titleA lightweight and enhanced model for detecting the Neotropical brown stink bug, Euschistus heros (Hemiptera: Pentatomidae) based on YOLOv8 for soybean fieldspt_BR
dc.typeArtigopt_BR
dc.subject.keywordAprendizado profundopt_BR
dc.subject.keywordSoja - plantiopt_BR
dc.subject.keywordAnálise de imagenspt_BR
dc.subject.keywordPercevejo (Inseto)pt_BR
dc.rights.licenseThis is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/bync/4.0/).pt_BR
dc.identifier.doihttps://doi.org/10.1016/j.ecoinf.2024.102543pt_BR
dc.description.abstract1Insect pest detection and monitoring are vital in an agricultural crop to help prevent losses and be more precise and sustainable regarding the consequent actions to be taken. Deep learning (DL) approaches have attracted attention, showing triumphant performance in many image-based applications. In the adult stage, this research considers detecting a vital insect pest in soybean crops, the Neotropical brown stink bug (Euschistus heros), from field images acquired by drones and cellphones. We develop and test an improved YOLO-model convolutional neural network (CNN) with fewer parameters than other state-of-the-art models and demonstrate its superior generalization and average precision on public image datasets and the new field data provided here. Considering the proposal's precision and time of response, the possibility of deploying this technology for automatic monitoring and pest management in the near future is promising. We provide open code and data for all the experiments performed.pt_BR
dc.identifier.orcidhttps://orcid.org/0009-0000-8713-798Xpt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-9301-0851pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-4868-0629pt_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Mechanical Engineeringpt_BR
dc.contributor.affiliationEMBRAPA Cerradospt_BR
dc.contributor.affiliationEMBRAPA Soybeanpt_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Mechanical Engineeringpt_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Computer Sciencept_BR
dc.description.unidadeFaculdade de Tecnologia (FT)pt_BR
dc.description.unidadeDepartamento de Engenharia Mecânica (FT ENM)pt_BR
dc.description.unidadeInstituto de Ciências Exatas (IE)pt_BR
dc.description.unidadeDepartamento de Ciência da Computação (IE CIC)pt_BR
dc.description.ppgPrograma de Pós-Graduação em Sistemas Mecatrônicospt_BR
dc.description.ppgPrograma de Pós-Graduação em Informáticapt_BR
Aparece en las colecciones: Artigos publicados em periódicos e afins

Mostrar el registro sencillo del ítem " class="statisticsLink btn btn-primary" href="/handle/10482/54051/statistics">



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.