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A B S T R A C T   

Insect pest detection and monitoring are vital in an agricultural crop to help prevent losses and be more precise 
and sustainable regarding the consequent actions to be taken. Deep learning (DL) approaches have attracted 
attention, showing triumphant performance in many image-based applications. In the adult stage, this research 
considers detecting a vital insect pest in soybean crops, the Neotropical brown stink bug (Euschistus heros), from 
field images acquired by drones and cellphones. We develop and test an improved YOLO-model convolutional 
neural network (CNN) with fewer parameters than other state-of-the-art models and demonstrate its superior 
generalization and average precision on public image datasets and the new field data provided here. Considering 
the proposal's precision and time of response, the possibility of deploying this technology for automatic moni
toring and pest management in the near future is promising. We provide open code and data for all the exper
iments performed.   

1. Introduction 

Smartly monitoring insects in a cropping system is highly significant 
due to economic and sustainability issues. More than a hundred insect 
species might be present in a particular crop cycle, especially in tropical 
areas, and only a few of them could be considered pests to a specific 
crop, with some being neutral, and a considerable amount is even 
beneficial. Nowadays, with the advent of precise cameras and powerful 
computers at affordable prices, artificial intelligence techniques such as 
deep learning (Butera et al., 2021) provide a spectrum of possibilities to 
approach insect pest detection for real-time applications. (Li et al., 2021) 
and (Kasinathan et al., 2021) provide two interesting and timely reviews 
of machine and deep learning techniques for intelligent management of 
insects with field images, where relevant successful approaches are 
shown, and challenges to be pursued are commented on. Most of the 
recent approaches are designed for a particular crop or even for a 
particular insect pest, since the relevance of controlling an insect pest in 
a more sustainable way poses economic and practical issues. This type of 

technology is undoubtedly changing the way we can identify insects in 
the wild. Moreover, new developments are needed (Høye et al., 2021). 

Despite its economic significance, the excessive and indiscriminate 
use of pesticides poses a significant economic and environmental chal
lenge since insecticides contribute more than 20% of production costs 
(Bueno et al., 2011). Precision farming techniques have emerged, aim
ing to precisely locate pests, diseases, and deficiencies, enabling targeted 
interventions and reducing waste. 

Accordingly, computer vision models have recently been employed 
in diverse platforms to identify insects and weeds. In general, the 
approach aims to identify the pest as quickly and accurately as possible 
in the early stages of the crop. The challenges are considerable, since 
there are visual similarities in insects morphology between species, 
camouflage strategies, habits and preferences depending on cropping 
environment. Some successful approaches rely on sticky traps to capture 
insect individuals, and then apply algorithms to identify and count the 
trapped insects (Tang et al., 2023), (Ciampi et al., 2023). Trying to 
detect and identify insect species in open field images and video streams 
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poses more difficulties than using sticky traps (Li et al., 2021). A trend 
lately is to encourage collecting field images with cameras on drones, 
labeling them, and design more efficient algorithms to improve perfor
mance on classification. Integrated platforms, onboard drones with 
recognition software, would aim to map areas for pest management 
(Kern et al., 2020). 

Soybean is a globally significant crop, valued for its high protein and 
oil content, making it a crucial source of vegetable oil and animal pro
tein feed (Masuda and Goldsmith, 2009). Among the pests most 
commonly found in soybean crops in tropical regions, the Neotropical 
brown stink bug (NBSB) Euschistus heros (Hemiptera: Pentatomidae) is 
one of the most critical (Bortolotto et al., 2015). Adults have an average 
length of 10 mm. So, detecting NBSB in soybean fields is of utmost 
importance in agricultural settings due to its potential to cause signifi
cant crop damage. Traditional detection methods, such as using the beat 
cloth, can be time-consuming and labor-intensive, in addition to 
demanding the hiring of qualified and expensive professionals to carry 
out the operation. Therefore, there is a need to explore efficient and real- 
time solutions to detect and count these pests accurately in the early 
stages of crop infestation. This paper addresses this research question: 
How can a fast and precise enough classification model for NBSB be 
developed using field images and a state-of-the-art algorithm? 

Some recent works have diligently approached the problem of clas
sifying insect pest images in soybean crops. Tetila et al. (2020b) eval
uated three CNN models, DenseNet-201, Inception-Resnet-v2, and 
Resnet-50, in soybean field images after SLIC superpixel segmentation. 
A follow-up of that work was published by (Tetila et al., 2020a) to 
evaluate the fine-tuning strategies of Inception-v3, Resnet-50, VGG-16, 
VGG − 19, and Xception, where accuracy classifications, over 90% 
were reported. Those models need to be faster for real-time applications. 

YOLO (You Only Look Once) (Redmon et al., 2016) models are 
widely used for object detection but may struggle with accurately 
detecting small objects and have high computational demands. Despite 
these limitations, YOLO's real-time processing and overall performance 
make them favored in computer vision applications. Researchers are 
continually improving YOLO models to enhance their versatility and 
efficiency. Silveira et al. (2021) assessed YOLOv3 for real-time insect 
pest detection in soybean fields and failed in some cases. Verma et al. 
(2021) compared YOLOv4 and YOLOv5, with YOLOv5 achieving the 
highest insect detection accuracy. Also, (Önler, 2021), used YOLOv5 to 
identify thistle caterpillars in sunflower cultivation. In turn, (Ahmad 
et al., 2022) developed an object recognition system for different insects 
based on various YOLO architectures, with YOLOv5x outperforming 
others. And more recently (Khalid et al., 2023), YOLOv8 achieved high- 
precision figures for early pest detection when compared with other 
YOLO architectures. 

Researchers have made significant efforts to address the challenges 

YOLO models face in accurately detecting small objects and their 
computational demands. Various architectural modifications have been 
proposed to enhance the performance and efficiency of YOLO-based 
object detection systems. These advancements aim to improve small 
object detection and optimize computational resources for real-world 
applications. 

One approach to improving small object detection from YOLOv5 is 
the YOLO-Z model proposed by (Benjumea et al., 2021). Enhancing 
YOLOv5 with the incorporation of attention mechanisms, specifically 
channel and spatial attention modules, has shown significant refinement 
of the focus of feature maps (Yuan et al., 2021). Yuan et al. (2022) 
introduced YOLOv5‑tiny, a miniature aggregate detection and classifi
cation model that outperformed other object detection algorithms 
regarding precision. An MD-YOLO model was proposed by (Tian et al., 
2023) with three key components: an image feature extraction part, a 
feature fusion network, and a prediction module for detecting some 
pests in field images. Zhan et al. (2022) proposed four design variations 
in a CNN model to improve small object detection in drone-captured 
scenes. 

One lightweight object detection method, YOLOLite-CSG, was pro
posed by (Cheng et al., 2022) and designed for low-performance devices 
in agricultural environments. Based on YOLOLite with optimized pre
cision, reduced parameters, and enhanced spatial information via k- 
means++, sandglass blocks, and coordinate attention. Liu et al. (2023) 
developed an improved YOLOv5 algorithm for UAV capture scenes to 
enhance feature extraction capacity and detection performance for 
medium- and long-range objects. Li et al. (2023) proposed an algorithm 
with a new point-line distance loss function, attention module, and 
mixup online data augmentation to achieve high mean average precision 
while retaining the lightweight characteristics of traditional YOLOv5. 
Huang et al. (2023) and Mahaur and Mishra (2023) have proposed 
interesting modifications to basic YOLO architectures to detect small 
objects well. 

Therefore, the literature showcases ongoing efforts to address the 
challenge of detecting small objects, like insects, indicating that the 
problem remains relevant and unsolved. Recent work on YOLOv8 in
cludes optimization using the simulated annealing (SA) algorithm for 
crop pest detection (Kang et al., 2023), as well as an improved feature 
fusion network and new network structure for improved detection ac
curacy (Lou et al., 2023). However, a good compromise between speed 
and accuracy remains to be dealt with in practical scenarios such as field 
crops. 

Given the architectural affinities between YOLOv5 and YOLOv8, 
specific proposed adaptations for YOLOv5 hold promise in fashioning an 
improved YOLOv8 model tailored for the discernment of NBSB in soy
bean fields. In light of this, this research proposes modifications within 
the YOLOv8 bottleneck, representing a strategic step forward. This 

Fig. 1. General schematics of the proposed method showing it can receive different input from real fields and produce detection and counting of NBSB.  
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proposal is especially crucial in insect detection, where precision and 
efficiency are paramount. 

This study approached the problem of detecting and counting NBSB 
through images and videos acquired with drones. The state-of-the-art 
methods nowadays are based on deep learning algorithms, and we 
have developed an improved YOLOv8 model with architecture modifi
cations that have allowed a good compromise between accuracy and 
speed of processing after it has been trained. We tested the model with a 
public image dataset of NBSB in soybean fields and added a novel one 
with more images. The results have shown that the system can truly help 
automate this task, which will allow better pest management control, 
and it can be extended to other pests and crops in the future. Fig. 1 brings 
general schematics of the proposal, where the model receives images or 
videos from real field conditions and produces detection and counting of 
NBSB. 

This research addresses those main issues with the following high
lights as contributions:  

• an improved YOLOv8 model with an adapted P2 level and C2f2 
layer, well tailored for small object detection, such as insects in field 
images; 

• ablation experiments with the new modules showing the effective
ness of their inclusion;  

• tests with a benchmark public dataset and with novel field-collected 
images of soybean fields;  

• a novel dataset of NBSB (ground truth) images in soybean fields for 
testing; 

The remainder of the paper describes the materials and methods in 
Section 2, and it shows results and discussion in Section 3, finishing with 
conclusions in Section 4. 

2. Materials and methods 

In order to develop the proposed model based on YOLOv8, we 
evaluated the impact of different modules, namely the P2 feature level 
and C2f2 layer, on the performance of the NBSB object detection 

algorithm. We evaluated ablation experiments under the same experi
mental conditions, where the new algorithm was trained and tested on 
the INSECT10K7C640_SAT dataset (Lima, 2023). The new algorithm's 
performance is compared against three models: A) YOLOv8n, B) 
YOLOv8n with C2f2 only, and C) YOLOv8n with P2 only. Fig. 2 sum
marizes the complete proposed process. 

2.1. YOLOv8 

YOLOv8 (Ultralytics, 2023) is the latest version released by Ultra
lytics of the popular real-time object detector YOLO (You Only Look 
Once) (Redmon et al., 2016). It is designed to combine the advantages of 
many other real-time object detectors, including a lightweight network 
architecture, effective feature fusion methods, and more accurate 
detection results. 

YOLOv8 introduces a state-of-the-art model with advanced object 
detection networks and instance segmentation capabilities, adaptable to 
diverse project requirements through scalable models akin to YOLOv5. 
YOLOv8 uses Anchor-Free (instead of Anchor-based) (Ultralytics, 2023), 
a method where object detection models directly predict the object's 
center without using anchor boxes. Anchor boxes are pre-defined boxes 
with specific heights and widths that detect object classes with the 
desired scale and aspect ratio. During detection, these anchor boxes are 
tiled across the image, and the network outputs probability and attri
butes for each box, which are then used to adjust the anchor boxes. 
However, anchor-free detection is more flexible and efficient than the 
previous YOLO models, as it does not require manual specification of 
anchor boxes, which can lead to suboptimal results. 

The C2f module is another improvement of YOLOv8. This module 
was designed by referring to the ELAN structure in YOLOv7 and incor
porating it while retaining the original idea of YOLOv5 (Lou et al., 
2023). The Bottleneck in YOLOv8 is similar to that in YOLOv5 but with a 
3 × 3 kernel size for the first convolution instead of the 1 × 1 kernel size 
in YOLOv5. YOLOv8's C2f module differs in how it handles the bottle
neck outputs, consisting of two 3 × 3 convolutions with residual con
nections. In C2f, all the outputs from the bottleneck are concatenated, 
while in C3, only the output of the last bottleneck is used. 

Fig. 2. Schematic diagram about the construction of the model to be embedded into the pipeline.  

B.P. de Melo Lima et al.                                                                                                                                                                                                                       



Ecological Informatics 80 (2024) 102543

4

2.1.1. P2 feature level 
As the preceding YOLOv5 network, YOLOv8 uses a feature pyramid 

architecture. It extracts features from different scales of the input image 
and combines them to generate a set of detection predictions. As part of 
this YOLOv5 architecture, the P2 layer is a CNN layer that is part of the 
object detection process and is responsible for receiving outputs from 
previous layers and generating the necessary outputs for the next layer. 
Specifically, the P2 layer is part of a section of the network called the 
“neck” that combines low and high-level features extracted from pre
vious layers to obtain richer information about the image. 

The P2 layer receives the output tensor from the previous layer as 
input. It applies convolution, normalization, and activation operations 
to generate a new tensor representing image features at different scales. 
The next layer then uses this output to generate the final outputs, rep
resenting object detections in the image. The P2 layers are specifically 
designed to extract features at a smaller scale, which can help identify 
small objects that other layers in the network may miss. On the other 
hand, by adding the P2 layer, the network becomes more profound, with 
more layers of computation. This increased depth can help the network 
to learn complex representations of the input image better and extract 
more informative features, leading to improved performance in object 
detection tasks, particularly for small objects. As part of this work, a P2 
layer with some corrections was integrated into this architecture. 

2.1.2. Changing the number of filters and its effects 
Reducing the number of filters in the YOLOv8 object detection model 

can have several expected effects on its performance and characteristics. 

The number of filters in the model's convolutional layers directly im
pacts its ability to learn and represent features from the input data. 

One of the most immediate effects of reducing the number of filters is 
a decrease in model complexity. The number of parameters and gradi
ents will be reduced, resulting in a more lightweight model. That can be 
beneficial for scenarios where computational resources are limited, 
making the model more efficient for deployment on resource- 
constrained devices Zhang et al. (2019). While a smaller model may 
require less computational power, it is also likely to decrease detection 
accuracy. Because of that, it may restrict the model's capacity to repre
sent a wide range of object features effectively. That could lead to dif
ficulties in detecting objects with varying scales, shapes, or orientations, 
which does not seem to be an immediate problem, considering the low 
variability of NBSB, if we limit ourselves to detecting only more 
advanced stages of the insect, as is the case. 

On the positive side, a smaller model might generalize better on data 
from previously unseen domains or categories, with a reduced capacity 
to memorize training data; the model may focus on learning more 
generic features that can be useful across different datasets (Seema
kurthy et al., 2022). As we will see later, this is a goal we seek in our 
model. 

A reduction in the number of filters can lead to faster inference times. 
Using smartphone applications, the model may process images more 
quickly, making it suitable for real-time applications or scenarios that 
demand rapid detection, such as NBSB detection and counting (Diwan 
et al., 2023). However, care must be taken, as if the number of filters is 
decreased, the model might become more prone to overfitting the 

Fig. 3. (a) INSECT10K7C640_SAT dataset main data; (b) NBSB distribution over scene; (c) Count of insects over images and (d) Sample image from our dataset, 
comprising scene with NBSB annotated and background only after preprocessing. 
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training data, and it could struggle to capture complex patterns, 
resulting in a loss of performance when dealing with new, unseen ex
amples (Diwan et al., 2023). 

2.2. Datasets 

Our study used a dataset of plantation images collected from a soy
bean agricultural area in Dourados-MS, Brazil, called INSECT10K7C and 
available (Tetila, 2019). The dataset consists of 1000 digital images 
captured locally by the researchers using a digital camera equipped with 
a 12.2-Mpixel resolution 1/2.5” Samsung SM-G930F sensor. The images 
were recorded at a 1-m altitude above the plantation, using an angle of 
approximately 45◦ from the camera to the ground. The images were 
collected during the reproductive phenological stages R1–R6 of the 
soybean reproductive phase in the 2018/19 crop, on different days and 
in varied climatic conditions between 6 P.M. and 7:30 P.M. 

The original dataset used in this study consisted of 903 images with 
at least one annotation. These raw images were first manually annotated 
using Make Sense, with a single “bug” class, fully containing the visible 
outline of the NBSB insects. We then applied several preprocessing and 
augmentation steps to the annotated images using Roboflow tools to 
enhance the dataset's diversity and increase its size for more effective 
model training. These steps generated additional data points, ultimately 
expanding the dataset to 4000 images. The dataset was obtained at the 
end of these steps, as shown in Fig. 3. 

During the preprocessing phase, techniques like auto-orientation, 
resizing, tiling, and filtering were utilized to standardize and enrich 
the dataset. These steps ensured that the images were consistently ori
ented, had a uniform size of 640 × 640 pixels, and contained a sub
stantial amount of annotated data, meeting the 90% annotation 

threshold. Augmentation played a crucial role in further diversifying the 
dataset. By introducing random saturation adjustments to each training 
example, the number of outputs per example was increased to two. This 
augmentation strategy introduced variations in color intensity, 
contributing to a more comprehensive and robust training dataset. 

The training set, comprising the majority of the data (82%), con
taining 4000 images, is used to train the model and adjust its parame
ters, allowing it to learn from a diverse range of examples and patterns in 
the data. The validation set (13%), consisting of 607 images, is utilized 
during training to fine-tune hyperparameters and assess the model's 
performance on unseen data, helping to prevent overfitting and ensuring 
generalization. Lastly, the testing set (5%), which included 260 images, 
serves as an independent evaluation of the model's performance on 
completely unseen data, providing a reliable measure of its real-world 
effectiveness and ability to generalize. 

2.3. Performance evaluation 

To evaluate the ablated model results, we use five metrics, namely 
Precision (Eq. (1)), Recall (Eq. (2)), mAP0.5 and mAP0.5:0.95, related to 
Eq. (3), Params(M), Flops(G), Inference(ms) and Time(h). 

Precision =
TP

TP + FP
(1)  

Recall =
TP

TP + FN
(2) 

The evaluation of insect detection is performed using detection 
scores. A detection score of at least 0.5 is required to classify the insect as 
a true positive (TP). Incorrect identification of an object, such as leaves 

Fig. 4. Summary of metrics and their use cases in the tracking problem for later application on insect counting.  
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or background, as an insect is considered a false positive (FP). Failure to 
detect an insect or incorrectly detect it in a different class is considered a 
false negative (FN). In cases where no insect is present in the image, a 
true negative (TN) is recorded. 

The mean average precision (mAP) is the primary evaluation index 
used to measure network detection performance, which considers both 
precision and recall, defined in Eqs. (1) and (2), respectively. The mAP is 
calculated by averaging the precision at various recall values obtained 
from the precision-recall (PR) curve, as in Eq. (3). This evaluation metric 
comprises mAP0.5 and mAP0.5:0.95. 

mAP =
1
k
∑k

i=1
APi (3) 

We also consider Params and FLOPs to evaluate the model. The 
“Params” metric in a neural network model refers to the number of 
learned variables used for making predictions. It is an essential metric 
for evaluating the model's complexity and computational efficiency. 
Models with more parameters generally require more resources for 

training and inference, but they may also have higher accuracy. FLOPS 
stands for “Floating Point Operations per Second”, it measures how 
many floating point arithmetic operations a model can perform per 
second, being a hardware-dependent measure. 

Performance parameters such as inference time (in ms) and time 
taken for training (in hours) are critical metrics for evaluating the effi
ciency of YOLO models. Inference time measures the speed at which the 
model processes input data and produces output predictions. It is 
essential to minimize inference time for real-time applications where 
speed is crucial, such as real-time object detection in videos. On the 
other hand, time taken for training measures how long it takes for the 
model to learn from the training data and improve its accuracy. This 
metric is essential for measuring the overall training efficiency of the 
YOLO model. Considering these two parameters when selecting a YOLO 
model for a particular use case is essential, as they can impact the 
model's performance and computational cost. 

These concepts change slightly for insect counting in video streams, 
based on differences recorded between each video frame. A true positive 

Fig. 5. Representation of the structure of the improved YOLO model.  
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(TP) is considered when a new-appearing insect (from frame k to k + 1) 
receives a new ID. A false negative (FN) occurs when a new insect in the 
video does not receive a new ID or its track is interrupted between 
frames k and k + 1. A false positive (FP) is computed when an insect 
previously identified receives another ID simultaneously with the pre
viously assigned ID. An ID switch(IDS) occurs when an insect changes its 
ID between frame k and the subsequent frame k + 1. Finally, a true 
negative (TN) occurs when the model correctly does not perform a new 
insect count when there is no insect in the frame. It is also worth noting 

that each of these events on the scene is recorded as Ground Truth (GT) 
so that when there are two insects on the scene, we have a GT equal to 2. 
The same occurs when there is a duplicate ID, an FP and a TP simulta
neously. These predicted situations are summarized in Fig. 4. 

With these primary metrics, we calculate the multi-object tracking 
accuracy (MOTA), Bernardin et al. (2006) of the experiment, the pri
mary evaluation metrics for the tracking performance, according to Eq. 
(4). MOTA ranges from − ∞ to 1 and can be multiplied by 100 to get 
MOTA in percentage. The tracking quality is better when MOTA value is 
closer to 1, being deficient when this value is 0 or less. 

MOTA = 1 −
FN + FP + IDS

GT
(4)  

2.4. Proposed approach 

The original YOLOv8 model is highly effective; however, it still 
struggles to accurately detect small targets in complex scenes; therefore, 
it is a problem that still needs to be solved entirely. The issue lies mainly 
in feature extraction, where more extensive features often overshadow 
small targets. Extracted features lack small-target information, leading 
to poor detection results. Furthermore, small targets are more likely to 
overlap with other objects, making them harder to distinguish and locate 
in the image (Lou et al., 2023). To solve the mentioned problems, we 
proposed an improved detection algorithm, the structure is shown in 
Fig. 5, that detects small-size targets, such as Euschistus Heros, and it is 
also a lighter and faster model than the original YOLOv8. 

The YOLOv8 algorithm offers a range of network structures, 
including YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x. 
While they differ in width and depth, they follow the same principles 
and can be chosen according to specific needs. The deeper the structure, 
the higher the precision, but the slower the training and inference speed. 
YOLOv8n was chosen as the base structure to prioritize speed without 
compromising accuracy, with further enhancements to improve 
performance. 

Adding the P2 feature level to the YOLOv8 architecture makes the 
network deeper because an additional layer is added to the overall 
network structure. The YOLOv8 architecture already includes a series of 
convolutional layers and a neck section that combines features from 

Table 1 
The detailed structure of YOLOv8n + P2 feature level.  

From Repeats Module Arguments 

− 1 1 Conv [64, 3, 2] 
− 1 1 Conv [128, 3, 2] 
− 1 3 C2f2 [128, True] 
− 1 1 Conv [256, 3, 2] 
− 1 6 C2f2 [256, True] 
− 1 1 Conv [512, 3, 2] 
− 1 6 C2f2 [512, True] 
− 1 1 Conv [1024, 3, 2] 
− 1 3 C2f2 [1024, True] 
− 1 1 SPPF [1024, 5] 
− 1 1 Upsample [None, 2, “nearest”] 
(− 1, 6) 1 Concat [1] 
− 1 3 C2f2 [512] 
− 1 1 Upsample [None, 2, “nearest”] 
(− 1, 4) 1 Concat [1] 
− 1 3 C2f2 [256] 
− 1 1 Upsample [None, 2, “nearest”] 
(− 1,2) 1 Concat [1] 
− 1 3 C2f2 [128] 
− 1 1 Conv [128, 3, 2] 
(− 1, 15) 1 Concat [1] 
− 1 3 C2f2 [256] 
− 1 1 Conv [256, 3, 2] 
(− 1,12) 1 Concat [1] 
− 1 3 C2f2 [512] 
− 1 1 Conv [512, 3, 2] 
(− 1, 9) 1 Concat [1] 
− 1 3 C2f2 [1024] 
(18, 21, 24, 27) 1 Detect [nc]  

Fig. 6. Proposed C2f2 layer structure showing the number and order of filters.  
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different scales. By adding P2, as in Table 1, in a similar way as in 
YOLOv5 (Benjumea et al., 2021; Zhan et al., 2022), the network is ex
pected to become more profound with more layers of computation. This 
increased depth can help the network to learn complex representations 
of the input image better and extract more informative features, which 
can lead to improved performance in object detection tasks, particularly 
for small objects. 

It is worth noting, however, that increasing the network depth also 
comes with some potential downsides, such as increased computational 
complexity and a greater risk of overfitting the model to the training 
data. So, adding the P2 layer to the YOLOv8 architecture is a tradeoff 
that needs to be carefully balanced with other considerations, such as 
model size and performance requirements. In this sense, we proposed in 
this work a modification in the C2f layer due to its importance in the 
general architecture of YOLOv8, in the sense of making it lighter and 
counterbalancing the increase obtained with the addition of the P2 
feature level layer. In our work, we call this new layer C2f2. 

C2f2 diverges from C2f insofar as they have a different number of 
filters in the bottleneck blocks but have a similar network structure, 
Fig. 6. Both implementations utilize the CSP bottleneck block, which 
commonly incorporates two convolutions found in convolutional neural 
network architectures. The block consists of a 1 × 1 convolution layer, a 
3 × 3 depthwise convolution layer, and another 1 × 1 convolution layer. 
The input tensor is split into two equal parts, with the first part going 
through the first 1 × 1 convolution and being split again. The second 
part goes through bottleneck modules, which consist of two separable 
convolution layers and an optional shortcut connection. The two split 

parts and the outputs of the bottleneck modules are concatenated and 
passed through the second 1 × 1 convolution layer to produce the block 
output. An ‘n’ parameter determines the number of bottleneck modules; 
in this case, it is 1. 

In this study, ablation experiments are conducted to evaluate the 
impact of different modules (P2 feature level and C2f2 layer) on the 
performance of the NBSB object detection algorithm under the same 
experimental conditions. For that purpose, the new algorithm was 
trained and tested on the INSECT10K7C640_SAT dataset and compared 
with A) YOLOv8n, B) YOLOv8n with C2f2 only, and C) YOLOv8n with 
P2 only. We chose YOLOv8n version 8.0.99 as the baseline model for the 
ablation experiments. The input image resolution was set to 640 × 640, 
and 100 epochs were trained under a batch size 150. 

This work used Google Colab, a browser-based coding platform that 
provides free GPU resources. Specifically, we used the Google Colab 
Pro+ version, which offers priority access to more powerful GPUs and 
high-memory virtual machines compared to the free version. We used 
the NVIDIA A100-SXM4-40GB GPU, specifically, a high-performance 
GPU with 40GB memory. 

2.5. Testing generalization of the model 

We have also used an unpublished set of NBSB images to test whether 
the proposed object detection model, trained with images from the 
INSECT10K7C640_SAT dataset, could generalize under different condi
tions. Moreover, to test the counting capabilities of the proposed system. 
This set comprises a total of 42 images of Euschistus Heros in soybean 

Fig. 7. (a) EMBRAPA_EUSCHISTUS dataset main data; (b) NBSB distribution over scene; (c) Count of insects over images and (d) Sample image from our dataset, 
comprising scene with NBSB annotated and background only after preprocessing. 
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obtained between February and March 2021 in the experimental area of 
Embrapa in Santo Antônio de Goiás, Goiás, Brazil. The images, which we 
call in this study EMBRAPA_EUSCHISTUS, Fig. 7, were obtained using 
the rear camera of a smartphone model G9 - LG. The bugs were found in 
soybean plants at a 1.2 to 1.5 m height. We used Google Colab NVIDIA 
A100-SXM4-40GB GPU for object detection on the images. The image 
size was 640 px, and the models were trained on it. 

This new dataset was animated in a video where the counting ca
pacity of the proposed method could also be tested. This approach has 
several advantages over traditional methods like the beat cloth. It can 
help farmers target specific areas for pest control measures, optimizing 
the use of resources and reducing environmental impact. 

The compilation of images into a video was facilitated by Power
Point's slideshow feature, as depicted in Fig. 8. We adjusted the slide 
transition mode using the “push” effect so that each transition lasted 3 s 
and, once the transition was complete, it would automatically advance a 
new slide. The images occupied the entire 1:1 video screen, thus 
obtaining a video lasting 2 min and 7 s. By leveraging presentation 

software like PowerPoint, precise control over transition effects and 
timing allows for seamless, continuous transitions between images, 
mimicking the fluidity of drone footage. While this approach may not 
encompass the entirety of drone capabilities, it presents a creative and 
cost-effective alternative. The video was recorded using the Windows 11 
Snipping Tool and saved in mp4 format. With this, the generated video 
can be easily uploaded to our framework. Finally, the video was divided 
into frames at a rate of 5 FPS (compatible with the analysis we want to 
make of each frame) using the ASPOSE web application (ASPOSE, 
2024). 

2.6. Counting method 

In the context of counting insects in soybean crops using video 
streams, the ByteTrack algorithm, introduced by (Zhang et al., 2022), 
emerges as a valuable tool. Specifically designed for video sequences, 
ByteTrack efficiently categorizes detection boxes into high and low- 
score classifications, retaining comprehensive information (Zhang 
et al., 2022). 

Initially, ByteTrack, as covered by (Zhang et al., 2022), establishes 
connections between tracks and high-scoring boxes, although occasional 
mismatches can occur, often due to factors such as motion blur or oc
clusion. In order to address these challenges, the algorithm leverages a 
pivotal component: the Kalman filter. This filter extrapolates the current 
state of frames based on prior estimations and continually refines them 
using real-time observations. This dynamic process guarantees precise 
tracking of objects over time. 

Moreover, ByteTrack's attributes render it particularly advantageous 
in this scenario. The algorithm achieves high tracking speeds by effi
ciently distributing computational resources, ensuring real-time moni
toring capabilities, according to (Zhang et al., 2022). Consequently, 
ByteTrack enables rapid and highly accurate enumeration of insects 

Fig. 8. General scheme of the process of transforming a series of images into a dynamic video mimicking drone footage.  

Table 2 
Comparing algorithm performance in terms of precision, mean average precision 
at IoU 0.5, mean average precision at IoU 0.95, model parameters, floating-point 
operations, inference time, and total processing time.  

Model Prec. mAP0.5 mAP0.95 Par. 
(M) 

Flops 
(G) 

Inf. 
(ms) 

Time 
(h) 

YOLOv8n 84.4 61.5 34.4 3.01 8.1 0.4 0.33 
YOLOv8n +

C2f2 
62.5 56.5 35 1.81 5.1 0.3 0.32 

YOLOv8n +
P2 

77.1 65 39.2 2.92 12.2 0.7 0.33 

(Proposed 
model) 

78.3 71.1 38.8 1.69 8.6 0.6 0.33  
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within the soybean crop environment using a moving camera video. 
Encouraging future research, we readily share our datasets and codes 

on GitHub. 

3. Results and discussion 

3.1. Proposed model analysis 

Our study compared, as in Table 2, the performance of different 
object detection algorithms for the given dataset, shown in Fig. 3. 
Among the algorithms evaluated, YOLOv8n, YOLOv8n + C2f2, 
YOLOv8n + P2, and the proposed model (YOLOv8n + P2 + C2f2). 
Adding P2 and C2f2 to YOLOv8n resulted in the highest overall per
formance among YOLOv8 models. 

Compared to YOLOv8n, adding P2 improved the precision and mAP 
values, especially at higher IoU thresholds. The addition of C2f2, on the 
other hand, did not significantly improve the performance of YOLOv8n. 

However, when we added both P2 and C2f2 to YOLOv8n, we observed 
an improvement in the algorithm's performance, as seen in Fig. 9. The 
precision and mAP values improved, especially at higher IoU thresholds, 
indicating that the addition of both features can help the algorithm to 
better localize and classify objects in images. 

Furthermore, adding P2 and C2f2 did not considerably increase 
model complexity, as seen in the lower number of parameters in Fig. 10 
and FLOPs compared to YOLOv8n + C2f2. We also observed that the 
addition of P2 and C2f2 to YOLOv8n did not result in a noticeable in
crease in inference time, as seen in the similar values of inference time 
between YOLOv8n and the proposed model (YOLOv8n + P2 + C2f2). 
This result suggests that adding P2 and C2f2 simultaneously to YOLOv8n 
can noticeably improve the algorithm's performance without compro
mising its speed or model complexity, indicating that the algorithm 
obtained can perform satisfactorily in real-time tasks, which is crucial 
for many applications, such as real-time object detection in videos. 

Inference on the testing set of the INSECT dataset is covered in 

Fig. 9. Mean average precision (mAP) report for the ablation experiment from YOLOv8.  

Fig. 10. Number of parameters (Par.) report, in millions, for the ablation experiment from YOLOv8.  
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Fig. 11. 

3.2. Analyzing NBSB count via video stream 

The results of the video insect detection and counting framework are 
summarized in Fig. 12 and exhibits several positive aspects that warrant 
recognition. 

Regarding false negatives (FN), the proposed framework exhibited a 
combined FN count of 243, indicating instances where the model failed 
to detect NBSBs that were present in the ground truth, which can lead to 
an underestimation of insect populations. While this metric highlights 
areas for potential improvement in sensitivity, it is important to note 
that the model detected a significant portion of the ground truth, as 
evidenced by the true positive (TP) count of 318. In insect detection and 
counting, having a framework based on high True Positives (TPs) is 
advantageous for several reasons despite the presence of high False 
Negatives (FNs). High TPs indicate that the model effectively captures a 

significant portion of the insect population, providing valuable data for 
agricultural monitoring. 

Firstly, a high TP count ensures that the model accurately represents 
the proper distribution and density of insects in the environment. This 
information is crucial for assessing the NBSB population, identifying 
hotspots of insect activity, and implementing targeted agricultural in
terventions to mitigate pest damage. Secondly, a system with high TPs 
instills confidence in the reliability of the model's output, enhancing its 
utility in decision-making processes as high TPs contribute to the overall 
reliability and credibility of the data collected. 

False positives (FP) were minimized with a count of 32, indicating 
instances where the model incorrectly identified non-insect objects as 
such or falsely doubled the count in an NBSB. This low FP rate un
derscores the model's specificity in distinguishing insects from other 
environmental elements and in understanding an individual on a tra
jectory without guessing that it is new, contributing to the overall ac
curacy of insect counting. Identity switches (IDS), representing cases 
where the model incorrectly switched the identity of an object across 
frames, were limited to 6 instances. That demonstrates the model's 
ability to consistently track individual insects over time, which is crucial 
for accurately assessing population counting and subsequent mapping. 

The multiple object tracking accuracy (MOTA) score, a comprehen
sive metric considering FN, FP, and IDS, was calculated at 61.45%. This 
significant MOTA score reflects the model's robustness in maintaining 
consistent object trajectories despite challenges such as occlusions and 
changes in lighting conditions. Such a high MOTA score underscores the 
model's reliability and efficacy in capturing the population of insects 
when captured on video stream, positioning the model as a promising 
tool for real-time insect monitoring applications. 

Finally, it is worth noting that in the video stream, there were 38 
unique adult NBSBs present and that the proposed model (improved 
YOLOv8 + ByteTrack) was able to track (assign unique IDs on) 40 in
dividuals, demonstrating in the case in question a certain balance be
tween summative and subtractive effects, reaching a value slightly close 
to the real one (increased by 5.3% of the actual value). 

In summary, the results of the video insect detection with improved 
YOLOv8 and the counting model with ByteTrack, partially shown in 
Fig. 13, demonstrate the framework's effectiveness in accurately iden
tifying and counting insects on video streams. While there are areas for 
improvement, such as reducing false negatives and enhancing sensi
tivity, the framework exhibits promising performance across various 
metrics, highlighting its potential for applications in agriculture and 

Fig. 11. Samples of NBSB detection with the proposed model on the INSECT10K7C640_SAT dataset (testing set). True positive cases are indicated when the con
fidence threshold is greater than or equal to 0.3. In the lower right corner, in blue, we present insects detected or present in the image in question. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. Confusion matrix exposing the results obtained (TP, FN, FP, TN and 
IDS), absolute values, in tracking insects along the frames of the provided 
video stream. 
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ecological pest management. Continued research and development in 
this field are critical to further advancing automated insect monitoring 
techniques. 

Insect pest management in cropping systems brings possibilities to 
improve automation techniques to avoid the undiscriminating applica
tion of pesticides. Knowing more precisely the insect species, and its 
distribution throughout a cultivated area can help more sustainable 
decisions to be taken in precision agriculture. That can be particularly 
true in crops cultivated in large areas such as soybeans. Monitoring 
crops for pest detection using aerial images and artificial intelligence 
techniques will be a reachable achievements shortly. 

The lightweight and enhanced YOLOv8 model presented in this 
study goes in the direction of closing this gap. Detecting and counting 
NBSB automatically in soybean crops in tropical areas can be dealt with, 
and the research opens a path for further improvements and extension to 
other insect pests. The next steps of this research will collect more image 
field data and focus on parameter optimization for end devices. 

3.3. Limitations of the approach 

The specific problem of detecting and counting NBSB through drone- 
captured images addressed in this research is of great importance for 
lowering the use of pesticides in soybean crops since the next steps 
would be to control the pests only in areas with their significant pres
ence. Compared with manual laboring, it would also be a step forward 
since precision and costs could be achieved satisfactorily in a short 
period. 

Our solution proposed here has shown promising results for the 
conditions given. However, they should be further tested in more varied 
weather, lighting, and crop conditions to be fully tuned before deploying 
in an integrated platform. For the problem addressed, i.e., detecting and 
counting NBSB, through images with a state-of-the-art solution is a 
novelty contribution. Regarding the data used, it is one of the largest 
available, and the results are genuinely competitive. However, in the 
future, a larger dataset with varied conditions could even be put openly 
for other researchers to benchmark the newest advances in this type of 
technology. As hardware keeps advancing at processing capacity, we 
will see a real-time solution of this kind soon. 

A model like this proposal should be trained and tested for each 
different crop and a set of significant pests for a particular crop, instead 
of trying to have a general pest detector for crops. Also, other critical 
sustainable and biological pest management should be considered, with 
more extensive benefits. The research model proposed here is a 
competitive solution in the scope of automation. 

4. Conclusions 

This study introduces a novel method tailored for real-time counting 
insect pests on soybean fields, made to the YOLOv8 detection model. 

By conducting ablation experiments, we evaluated modifications 
upon YOLOv8 architecture's performance in detecting NBSB pests in 
soybean crops. Our results demonstrate that the modified YOLOv8 with 
P2 and C2f2 layers noticeably improved precision and mean Average 
Precision (mAP) without increasing model complexity or inference time. 
These enhancements excel at higher Intersection over Union (IoU) 
thresholds, indicating the algorithm's potential for real-time applica
tions. True positive instances were reliably identified at a confidence 
threshold of 0.3 or higher. 

The evaluation of the video insect detection and counting model 
(improved YOLOv8 + Bytetrack) reveals promising results for its 
application in insect control within soybean crops. 

The model exhibits promising insect detection and counting perfor
mance, as evidenced by the low false positive rate and the limited 
number of identity switches (IDS). While there is room for improvement 
in reducing false negatives and enhancing sensitivity, the high true 
positive (TP) underscores the model's capability to detect insects in the 
ground truth accurately. Furthermore, the multiple object tracking ac
curacy (MOTA) score of 61.45% reflects the model's overall accuracy in 
tracking multiple insects across frames. Furthermore, the proposed 
model could count (assign IDs on) a number very close to the actual 
presence in the scene, that is, 40 out of 38 insects (5.3% higher). These 
results collectively suggest that the model holds substantial potential as 
a valuable tool in soybean crop management, offering effective insect 
monitoring and control. 

Extended work should aim to carry out tests with more drone video 
sequences, mainly covering other species of insects and developing an 
image processing methodology so that each collected frame in the video 
can be combined with the drone metadata so that the information 
collected can be mapped into a georeferenced orthomosaic capable of 
providing valuable information to farmers and researchers in the field. 
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