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Insect pest detection and monitoring are vital in an agricultural crop to help prevent losses and be more precise
and sustainable regarding the consequent actions to be taken. Deep learning (DL) approaches have attracted
attention, showing triumphant performance in many image-based applications. In the adult stage, this research
considers detecting a vital insect pest in soybean crops, the Neotropical brown stink bug (Euschistus heros), from
field images acquired by drones and cellphones. We develop and test an improved YOLO-model convolutional
neural network (CNN) with fewer parameters than other state-of-the-art models and demonstrate its superior

generalization and average precision on public image datasets and the new field data provided here. Considering
the proposal's precision and time of response, the possibility of deploying this technology for automatic moni-
toring and pest management in the near future is promising. We provide open code and data for all the exper-

iments performed.

1. Introduction

Smartly monitoring insects in a cropping system is highly significant
due to economic and sustainability issues. More than a hundred insect
species might be present in a particular crop cycle, especially in tropical
areas, and only a few of them could be considered pests to a specific
crop, with some being neutral, and a considerable amount is even
beneficial. Nowadays, with the advent of precise cameras and powerful
computers at affordable prices, artificial intelligence techniques such as
deep learning (Butera et al., 2021) provide a spectrum of possibilities to
approach insect pest detection for real-time applications. (Li et al., 2021)
and (Kasinathan et al., 2021) provide two interesting and timely reviews
of machine and deep learning techniques for intelligent management of
insects with field images, where relevant successful approaches are
shown, and challenges to be pursued are commented on. Most of the
recent approaches are designed for a particular crop or even for a
particular insect pest, since the relevance of controlling an insect pest in
a more sustainable way poses economic and practical issues. This type of

technology is undoubtedly changing the way we can identify insects in
the wild. Moreover, new developments are needed (Hgye et al., 2021).

Despite its economic significance, the excessive and indiscriminate
use of pesticides poses a significant economic and environmental chal-
lenge since insecticides contribute more than 20% of production costs
(Bueno et al., 2011). Precision farming techniques have emerged, aim-
ing to precisely locate pests, diseases, and deficiencies, enabling targeted
interventions and reducing waste.

Accordingly, computer vision models have recently been employed
in diverse platforms to identify insects and weeds. In general, the
approach aims to identify the pest as quickly and accurately as possible
in the early stages of the crop. The challenges are considerable, since
there are visual similarities in insects morphology between species,
camouflage strategies, habits and preferences depending on cropping
environment. Some successful approaches rely on sticky traps to capture
insect individuals, and then apply algorithms to identify and count the
trapped insects (Tang et al., 2023), (Ciampi et al., 2023). Trying to
detect and identify insect species in open field images and video streams
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Fig. 1. General schematics of the proposed method showing it can receive different input from real fields and produce detection and counting of NBSB.

poses more difficulties than using sticky traps (Li et al., 2021). A trend
lately is to encourage collecting field images with cameras on drones,
labeling them, and design more efficient algorithms to improve perfor-
mance on classification. Integrated platforms, onboard drones with
recognition software, would aim to map areas for pest management
(Kern et al., 2020).

Soybean is a globally significant crop, valued for its high protein and
oil content, making it a crucial source of vegetable oil and animal pro-
tein feed (Masuda and Goldsmith, 2009). Among the pests most
commonly found in soybean crops in tropical regions, the Neotropical
brown stink bug (NBSB) Euschistus heros (Hemiptera: Pentatomidae) is
one of the most critical (Bortolotto et al., 2015). Adults have an average
length of 10 mm. So, detecting NBSB in soybean fields is of utmost
importance in agricultural settings due to its potential to cause signifi-
cant crop damage. Traditional detection methods, such as using the beat
cloth, can be time-consuming and labor-intensive, in addition to
demanding the hiring of qualified and expensive professionals to carry
out the operation. Therefore, there is a need to explore efficient and real-
time solutions to detect and count these pests accurately in the early
stages of crop infestation. This paper addresses this research question:
How can a fast and precise enough classification model for NBSB be
developed using field images and a state-of-the-art algorithm?

Some recent works have diligently approached the problem of clas-
sifying insect pest images in soybean crops. Tetila et al. (2020b) eval-
uated three CNN models, DenseNet-201, Inception-Resnet-v2, and
Resnet-50, in soybean field images after SLIC superpixel segmentation.
A follow-up of that work was published by (Tetila et al., 2020a) to
evaluate the fine-tuning strategies of Inception-v3, Resnet-50, VGG-16,
VGG — 19, and Xception, where accuracy classifications, over 90%
were reported. Those models need to be faster for real-time applications.

YOLO (You Only Look Once) (Redmon et al., 2016) models are
widely used for object detection but may struggle with accurately
detecting small objects and have high computational demands. Despite
these limitations, YOLO's real-time processing and overall performance
make them favored in computer vision applications. Researchers are
continually improving YOLO models to enhance their versatility and
efficiency. Silveira et al. (2021) assessed YOLOv3 for real-time insect
pest detection in soybean fields and failed in some cases. Verma et al.
(2021) compared YOLOv4 and YOLOvV5, with YOLOvVS5 achieving the
highest insect detection accuracy. Also, (Onler, 2021), used YOLOVS to
identify thistle caterpillars in sunflower cultivation. In turn, (Ahmad
et al., 2022) developed an object recognition system for different insects
based on various YOLO architectures, with YOLOv5x outperforming
others. And more recently (Khalid et al., 2023), YOLOv8 achieved high-
precision figures for early pest detection when compared with other
YOLO architectures.

Researchers have made significant efforts to address the challenges

YOLO models face in accurately detecting small objects and their
computational demands. Various architectural modifications have been
proposed to enhance the performance and efficiency of YOLO-based
object detection systems. These advancements aim to improve small
object detection and optimize computational resources for real-world
applications.

One approach to improving small object detection from YOLOVS5 is
the YOLO-Z model proposed by (Benjumea et al., 2021). Enhancing
YOLOvV5 with the incorporation of attention mechanisms, specifically
channel and spatial attention modules, has shown significant refinement
of the focus of feature maps (Yuan et al., 2021). Yuan et al. (2022)
introduced YOLOv5-tiny, a miniature aggregate detection and classifi-
cation model that outperformed other object detection algorithms
regarding precision. An MD-YOLO model was proposed by (Tian et al.,
2023) with three key components: an image feature extraction part, a
feature fusion network, and a prediction module for detecting some
pests in field images. Zhan et al. (2022) proposed four design variations
in a CNN model to improve small object detection in drone-captured
scenes.

One lightweight object detection method, YOLOLite-CSG, was pro-
posed by (Cheng et al., 2022) and designed for low-performance devices
in agricultural environments. Based on YOLOLite with optimized pre-
cision, reduced parameters, and enhanced spatial information via k-
means++, sandglass blocks, and coordinate attention. Liu et al. (2023)
developed an improved YOLOV5 algorithm for UAV capture scenes to
enhance feature extraction capacity and detection performance for
medium- and long-range objects. Li et al. (2023) proposed an algorithm
with a new point-line distance loss function, attention module, and
mixup online data augmentation to achieve high mean average precision
while retaining the lightweight characteristics of traditional YOLOV5.
Huang et al. (2023) and Mahaur and Mishra (2023) have proposed
interesting modifications to basic YOLO architectures to detect small
objects well.

Therefore, the literature showcases ongoing efforts to address the
challenge of detecting small objects, like insects, indicating that the
problem remains relevant and unsolved. Recent work on YOLOVS in-
cludes optimization using the simulated annealing (SA) algorithm for
crop pest detection (Kang et al., 2023), as well as an improved feature
fusion network and new network structure for improved detection ac-
curacy (Lou et al., 2023). However, a good compromise between speed
and accuracy remains to be dealt with in practical scenarios such as field
crops.

Given the architectural affinities between YOLOvV5 and YOLOVS,
specific proposed adaptations for YOLOVS5 hold promise in fashioning an
improved YOLOv8 model tailored for the discernment of NBSB in soy-
bean fields. In light of this, this research proposes modifications within
the YOLOv8 bottleneck, representing a strategic step forward. This
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Fig. 2. Schematic diagram about the construction of the model to be embedded into the pipeline.

proposal is especially crucial in insect detection, where precision and
efficiency are paramount.

This study approached the problem of detecting and counting NBSB
through images and videos acquired with drones. The state-of-the-art
methods nowadays are based on deep learning algorithms, and we
have developed an improved YOLOv8 model with architecture modifi-
cations that have allowed a good compromise between accuracy and
speed of processing after it has been trained. We tested the model with a
public image dataset of NBSB in soybean fields and added a novel one
with more images. The results have shown that the system can truly help
automate this task, which will allow better pest management control,
and it can be extended to other pests and crops in the future. Fig. 1 brings
general schematics of the proposal, where the model receives images or
videos from real field conditions and produces detection and counting of
NBSB.

This research addresses those main issues with the following high-
lights as contributions:

e an improved YOLOv8 model with an adapted P2 level and C2f2
layer, well tailored for small object detection, such as insects in field
images;

e ablation experiments with the new modules showing the effective-
ness of their inclusion;

e tests with a benchmark public dataset and with novel field-collected
images of soybean fields;

¢ a novel dataset of NBSB (ground truth) images in soybean fields for
testing;

The remainder of the paper describes the materials and methods in
Section 2, and it shows results and discussion in Section 3, finishing with
conclusions in Section 4.

2. Materials and methods
In order to develop the proposed model based on YOLOVS, we

evaluated the impact of different modules, namely the P2 feature level
and C2f2 layer, on the performance of the NBSB object detection

algorithm. We evaluated ablation experiments under the same experi-
mental conditions, where the new algorithm was trained and tested on
the INSECT10K7C640_SAT dataset (Lima, 2023). The new algorithm's
performance is compared against three models: A) YOLOv8n, B)
YOLOv8n with C2f2 only, and C) YOLOv8n with P2 only. Fig. 2 sum-
marizes the complete proposed process.

2.1. YOLOv8

YOLOvV8 (Ultralytics, 2023) is the latest version released by Ultra-
lytics of the popular real-time object detector YOLO (You Only Look
Once) (Redmon et al., 2016). It is designed to combine the advantages of
many other real-time object detectors, including a lightweight network
architecture, effective feature fusion methods, and more accurate
detection results.

YOLOVS introduces a state-of-the-art model with advanced object
detection networks and instance segmentation capabilities, adaptable to
diverse project requirements through scalable models akin to YOLOVS5.
YOLOVS8 uses Anchor-Free (instead of Anchor-based) (Ultralytics, 2023),
a method where object detection models directly predict the object's
center without using anchor boxes. Anchor boxes are pre-defined boxes
with specific heights and widths that detect object classes with the
desired scale and aspect ratio. During detection, these anchor boxes are
tiled across the image, and the network outputs probability and attri-
butes for each box, which are then used to adjust the anchor boxes.
However, anchor-free detection is more flexible and efficient than the
previous YOLO models, as it does not require manual specification of
anchor boxes, which can lead to suboptimal results.

The C2f module is another improvement of YOLOv8. This module
was designed by referring to the ELAN structure in YOLOvV7 and incor-
porating it while retaining the original idea of YOLOv5 (Lou et al.,
2023). The Bottleneck in YOLOVS is similar to that in YOLOvV5 but with a
3 x 3 kernel size for the first convolution instead of the 1 x 1 kernel size
in YOLOv5. YOLOv8's C2f module differs in how it handles the bottle-
neck outputs, consisting of two 3 x 3 convolutions with residual con-
nections. In C2f, all the outputs from the bottleneck are concatenated,
while in C3, only the output of the last bottleneck is used.
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Fig. 3. (a) INSECT10K7C640_SAT dataset main data; (b) NBSB distribution over scene; (c¢) Count of insects over images and (d) Sample image from our dataset,

comprising scene with NBSB annotated and background only after preprocessing.

2.1.1. P2 feature level

As the preceding YOLOV5 network, YOLOV8 uses a feature pyramid
architecture. It extracts features from different scales of the input image
and combines them to generate a set of detection predictions. As part of
this YOLOVS5 architecture, the P2 layer is a CNN layer that is part of the
object detection process and is responsible for receiving outputs from
previous layers and generating the necessary outputs for the next layer.
Specifically, the P2 layer is part of a section of the network called the
“neck” that combines low and high-level features extracted from pre-
vious layers to obtain richer information about the image.

The P2 layer receives the output tensor from the previous layer as
input. It applies convolution, normalization, and activation operations
to generate a new tensor representing image features at different scales.
The next layer then uses this output to generate the final outputs, rep-
resenting object detections in the image. The P2 layers are specifically
designed to extract features at a smaller scale, which can help identify
small objects that other layers in the network may miss. On the other
hand, by adding the P2 layer, the network becomes more profound, with
more layers of computation. This increased depth can help the network
to learn complex representations of the input image better and extract
more informative features, leading to improved performance in object
detection tasks, particularly for small objects. As part of this work, a P2
layer with some corrections was integrated into this architecture.

2.1.2. Changing the number of filters and its effects
Reducing the number of filters in the YOLOV8 object detection model
can have several expected effects on its performance and characteristics.

The number of filters in the model's convolutional layers directly im-
pacts its ability to learn and represent features from the input data.

One of the most immediate effects of reducing the number of filters is
a decrease in model complexity. The number of parameters and gradi-
ents will be reduced, resulting in a more lightweight model. That can be
beneficial for scenarios where computational resources are limited,
making the model more efficient for deployment on resource-
constrained devices Zhang et al. (2019). While a smaller model may
require less computational power, it is also likely to decrease detection
accuracy. Because of that, it may restrict the model's capacity to repre-
sent a wide range of object features effectively. That could lead to dif-
ficulties in detecting objects with varying scales, shapes, or orientations,
which does not seem to be an immediate problem, considering the low
variability of NBSB, if we limit ourselves to detecting only more
advanced stages of the insect, as is the case.

On the positive side, a smaller model might generalize better on data
from previously unseen domains or categories, with a reduced capacity
to memorize training data; the model may focus on learning more
generic features that can be useful across different datasets (Seema-
kurthy et al., 2022). As we will see later, this is a goal we seek in our
model.

A reduction in the number of filters can lead to faster inference times.
Using smartphone applications, the model may process images more
quickly, making it suitable for real-time applications or scenarios that
demand rapid detection, such as NBSB detection and counting (Diwan
et al., 2023). However, care must be taken, as if the number of filters is
decreased, the model might become more prone to overfitting the
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Fig. 4. Summary of metrics and their use cases in the tracking problem for later application on insect counting.

training data, and it could struggle to capture complex patterns,
resulting in a loss of performance when dealing with new, unseen ex-
amples (Diwan et al., 2023).

2.2. Datasets

Our study used a dataset of plantation images collected from a soy-
bean agricultural area in Dourados-MS, Brazil, called INSECT10K7C and
available (Tetila, 2019). The dataset consists of 1000 digital images
captured locally by the researchers using a digital camera equipped with
a 12.2-Mpixel resolution 1/2.5” Samsung SM-G930F sensor. The images
were recorded at a 1-m altitude above the plantation, using an angle of
approximately 45° from the camera to the ground. The images were
collected during the reproductive phenological stages R1-R6 of the
soybean reproductive phase in the 2018/19 crop, on different days and
in varied climatic conditions between 6 P.M. and 7:30 P.M.

The original dataset used in this study consisted of 903 images with
at least one annotation. These raw images were first manually annotated
using Make Sense, with a single “bug” class, fully containing the visible
outline of the NBSB insects. We then applied several preprocessing and
augmentation steps to the annotated images using Roboflow tools to
enhance the dataset's diversity and increase its size for more effective
model training. These steps generated additional data points, ultimately
expanding the dataset to 4000 images. The dataset was obtained at the
end of these steps, as shown in Fig. 3.

During the preprocessing phase, techniques like auto-orientation,
resizing, tiling, and filtering were utilized to standardize and enrich
the dataset. These steps ensured that the images were consistently ori-
ented, had a uniform size of 640 x 640 pixels, and contained a sub-
stantial amount of annotated data, meeting the 90% annotation

threshold. Augmentation played a crucial role in further diversifying the
dataset. By introducing random saturation adjustments to each training
example, the number of outputs per example was increased to two. This
augmentation strategy introduced variations in color intensity,
contributing to a more comprehensive and robust training dataset.

The training set, comprising the majority of the data (82%), con-
taining 4000 images, is used to train the model and adjust its parame-
ters, allowing it to learn from a diverse range of examples and patterns in
the data. The validation set (13%), consisting of 607 images, is utilized
during training to fine-tune hyperparameters and assess the model's
performance on unseen data, helping to prevent overfitting and ensuring
generalization. Lastly, the testing set (5%), which included 260 images,
serves as an independent evaluation of the model's performance on
completely unseen data, providing a reliable measure of its real-world
effectiveness and ability to generalize.

2.3. Performance evaluation

To evaluate the ablated model results, we use five metrics, namely
Precision (Eq. (1)), Recall (Eq. (2)), mAPO0.5 and mAP0.5:0.95, related to
Eq. (3), Params(M), Flops(G), Inference(ms) and Time(h).

TP
Precision = ———— 1
recision TP+ FP (€8]
TP
Recall = ———— 2
ecall = 75 FN @

The evaluation of insect detection is performed using detection
scores. A detection score of at least 0.5 is required to classify the insect as
a true positive (TP). Incorrect identification of an object, such as leaves
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Fig. 5. Representation of the structure of the improved YOLO model.

or background, as an insect is considered a false positive (FP). Failure to
detect an insect or incorrectly detect it in a different class is considered a
false negative (FN). In cases where no insect is present in the image, a
true negative (TN) is recorded.

The mean average precision (mAP) is the primary evaluation index
used to measure network detection performance, which considers both
precision and recall, defined in Egs. (1) and (2), respectively. The mAP is
calculated by averaging the precision at various recall values obtained
from the precision-recall (PR) curve, as in Eq. (3). This evaluation metric
comprises mAP0.5 and mAPO0.5:0.95.

1 k
mAP = ;APi 3)

We also consider Params and FLOPs to evaluate the model. The
“Params” metric in a neural network model refers to the number of
learned variables used for making predictions. It is an essential metric
for evaluating the model's complexity and computational efficiency.
Models with more parameters generally require more resources for

training and inference, but they may also have higher accuracy. FLOPS
stands for “Floating Point Operations per Second”, it measures how
many floating point arithmetic operations a model can perform per
second, being a hardware-dependent measure.

Performance parameters such as inference time (in ms) and time
taken for training (in hours) are critical metrics for evaluating the effi-
ciency of YOLO models. Inference time measures the speed at which the
model processes input data and produces output predictions. It is
essential to minimize inference time for real-time applications where
speed is crucial, such as real-time object detection in videos. On the
other hand, time taken for training measures how long it takes for the
model to learn from the training data and improve its accuracy. This
metric is essential for measuring the overall training efficiency of the
YOLO model. Considering these two parameters when selecting a YOLO
model for a particular use case is essential, as they can impact the
model's performance and computational cost.

These concepts change slightly for insect counting in video streams,
based on differences recorded between each video frame. A true positive
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Table 1

The detailed structure of YOLOv8n + P2 feature level.
From Repeats Module Arguments
-1 1 Conv [64, 3, 2]
-1 1 Conv [128, 3, 2]
-1 3 C2f2 [128, Truel]
-1 1 Conv [256, 3, 2]
-1 6 C2f2 [256, True]
-1 1 Conv [512, 3, 2]
-1 6 C2f2 [512, True]
-1 1 Conv [1024, 3, 2]
-1 3 Cc2f2 [1024, True]
-1 1 SPPF [1024, 5]
-1 1 Upsample [None, 2, “nearest”]
(-1,6) 1 Concat [11
-1 3 C2f2 [512]
-1 1 Upsample [None, 2, “nearest”]
-1,4 1 Concat [1]
-1 3 C2f2 [256]
-1 1 Upsample [None, 2, “nearest”]
(-1,2) 1 Concat [1]
-1 3 C2f2 [128]
-1 1 Conv [128, 3, 2]
(-1, 15) 1 Concat [1]
-1 3 Cc2f2 [256]
-1 1 Conv [256, 3, 2]
(-1,12) 1 Concat [1]
-1 3 C2f2 [512]
-1 1 Conv [512, 3, 2]
(1,9 1 Concat [11
-1 3 C2f2 [1024]
(18, 21, 24, 27) 1 Detect [nc]

(TP) is considered when a new-appearing insect (from frame k to k + 1)
receives a new ID. A false negative (FN) occurs when a new insect in the
video does not receive a new ID or its track is interrupted between
frames k and k + 1. A false positive (FP) is computed when an insect
previously identified receives another ID simultaneously with the pre-
viously assigned ID. An ID switch(IDS) occurs when an insect changes its
ID between frame k and the subsequent frame k + 1. Finally, a true
negative (TN) occurs when the model correctly does not perform a new
insect count when there is no insect in the frame. It is also worth noting

h x w x 0.5¢c_out

h x w x 0.5¢c_out

Bottleneck
shortcut = ?

h x w x 0.5¢c_out
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that each of these events on the scene is recorded as Ground Truth (GT)
so that when there are two insects on the scene, we have a GT equal to 2.
The same occurs when there is a duplicate ID, an FP and a TP simulta-
neously. These predicted situations are summarized in Fig. 4.

With these primary metrics, we calculate the multi-object tracking
accuracy (MOTA), Bernardin et al. (2006) of the experiment, the pri-
mary evaluation metrics for the tracking performance, according to Eq.
(4). MOTA ranges from —oco to 1 and can be multiplied by 100 to get
MOTA in percentage. The tracking quality is better when MOTA value is
closer to 1, being deficient when this value is O or less.

FN + FP + IDS

GT )

MOTA =1

2.4. Proposed approach

The original YOLOv8 model is highly effective; however, it still
struggles to accurately detect small targets in complex scenes; therefore,
it is a problem that still needs to be solved entirely. The issue lies mainly
in feature extraction, where more extensive features often overshadow
small targets. Extracted features lack small-target information, leading
to poor detection results. Furthermore, small targets are more likely to
overlap with other objects, making them harder to distinguish and locate
in the image (Lou et al., 2023). To solve the mentioned problems, we
proposed an improved detection algorithm, the structure is shown in
Fig. 5, that detects small-size targets, such as Euschistus Heros, and it is
also a lighter and faster model than the original YOLOVS.

The YOLOv8 algorithm offers a range of network structures,
including YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8I], and YOLOv8x.
While they differ in width and depth, they follow the same principles
and can be chosen according to specific needs. The deeper the structure,
the higher the precision, but the slower the training and inference speed.
YOLOvV8n was chosen as the base structure to prioritize speed without
compromising accuracy, with further enhancements to improve
performance.

Adding the P2 feature level to the YOLOvVS8 architecture makes the
network deeper because an additional layer is added to the overall
network structure. The YOLOvS architecture already includes a series of
convolutional layers and a neck section that combines features from

h x w x 0.5¢c_out

h x w x 0.5(n+2)c_out

hxwxc_in

C2f2

Conv

k=1,s=1,p=0
c=c_out

h xw x c_out

Fig. 6. Proposed C2f2 layer structure showing the number and order of filters.



B.P. de Melo Lima et al.

[a]
Images Annotations
42 53

13 1.3 per image (average)
<f> across 1 classes

© 0 missing annotations
@ 0 null examples

Average Image Size Median Image Ratio

12.98 mp 3120%4160
Q@ from 12.98 mp 3k tall
@ t012.98 mp

[e]

32imgs

1 2 3
Count of bug objects

Ecological Informatics 80 (2024) 102543

[b]

[d]

Fig. 7. (a) EMBRAPA_EUSCHISTUS dataset main data; (b) NBSB distribution over scene; (c) Count of insects over images and (d) Sample image from our dataset,

comprising scene with NBSB annotated and background only after preprocessing.

different scales. By adding P2, as in Table 1, in a similar way as in
YOLOV5 (Benjumea et al., 2021; Zhan et al., 2022), the network is ex-
pected to become more profound with more layers of computation. This
increased depth can help the network to learn complex representations
of the input image better and extract more informative features, which
can lead to improved performance in object detection tasks, particularly
for small objects.

It is worth noting, however, that increasing the network depth also
comes with some potential downsides, such as increased computational
complexity and a greater risk of overfitting the model to the training
data. So, adding the P2 layer to the YOLOVS8 architecture is a tradeoff
that needs to be carefully balanced with other considerations, such as
model size and performance requirements. In this sense, we proposed in
this work a modification in the C2f layer due to its importance in the
general architecture of YOLOVS, in the sense of making it lighter and
counterbalancing the increase obtained with the addition of the P2
feature level layer. In our work, we call this new layer C2f2.

C2f2 diverges from C2f insofar as they have a different number of
filters in the bottleneck blocks but have a similar network structure,
Fig. 6. Both implementations utilize the CSP bottleneck block, which
commonly incorporates two convolutions found in convolutional neural
network architectures. The block consists of a 1 x 1 convolution layer, a
3 X 3 depthwise convolution layer, and another 1 x 1 convolution layer.
The input tensor is split into two equal parts, with the first part going
through the first 1 x 1 convolution and being split again. The second
part goes through bottleneck modules, which consist of two separable
convolution layers and an optional shortcut connection. The two split

parts and the outputs of the bottleneck modules are concatenated and
passed through the second 1 x 1 convolution layer to produce the block
output. An ‘n’ parameter determines the number of bottleneck modules;
in this case, it is 1.

In this study, ablation experiments are conducted to evaluate the
impact of different modules (P2 feature level and C2f2 layer) on the
performance of the NBSB object detection algorithm under the same
experimental conditions. For that purpose, the new algorithm was
trained and tested on the INSECT10K7C640_SAT dataset and compared
with A) YOLOv8n, B) YOLOv8n with C2f2 only, and C) YOLOv8n with
P2 only. We chose YOLOv8n version 8.0.99 as the baseline model for the
ablation experiments. The input image resolution was set to 640 x 640,
and 100 epochs were trained under a batch size 150.

This work used Google Colab, a browser-based coding platform that
provides free GPU resources. Specifically, we used the Google Colab
Pro+ version, which offers priority access to more powerful GPUs and
high-memory virtual machines compared to the free version. We used
the NVIDIA A100-SXM4-40GB GPU, specifically, a high-performance
GPU with 40GB memory.

2.5. Testing generalization of the model

We have also used an unpublished set of NBSB images to test whether
the proposed object detection model, trained with images from the
INSECT10K7C640_SAT dataset, could generalize under different condi-
tions. Moreover, to test the counting capabilities of the proposed system.
This set comprises a total of 42 images of Euschistus Heros in soybean
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video stream

Fig. 8. General scheme of the process of transforming a series of images into a dynamic video mimicking drone footage.

obtained between February and March 2021 in the experimental area of
Embrapa in Santo Antonio de Goiés, Goias, Brazil. The images, which we
call in this study EMBRAPA_EUSCHISTUS, Fig. 7, were obtained using
the rear camera of a smartphone model G9 - LG. The bugs were found in
soybean plants at a 1.2 to 1.5 m height. We used Google Colab NVIDIA
A100-SXM4-40GB GPU for object detection on the images. The image
size was 640 px, and the models were trained on it.

This new dataset was animated in a video where the counting ca-
pacity of the proposed method could also be tested. This approach has
several advantages over traditional methods like the beat cloth. It can
help farmers target specific areas for pest control measures, optimizing
the use of resources and reducing environmental impact.

The compilation of images into a video was facilitated by Power-
Point's slideshow feature, as depicted in Fig. 8. We adjusted the slide
transition mode using the “push” effect so that each transition lasted 3 s
and, once the transition was complete, it would automatically advance a
new slide. The images occupied the entire 1:1 video screen, thus
obtaining a video lasting 2 min and 7 s. By leveraging presentation

Table 2

Comparing algorithm performance in terms of precision, mean average precision
atIoU 0.5, mean average precision at IoU 0.95, model parameters, floating-point
operations, inference time, and total processing time.

Model Prec. mAP0.5 mAP0.95 Par. Flops Inf. Time
) @ (ms) (h)
YOLOvV8n 84.4 61.5 34.4 3.01 8.1 0.4 0.33
YOLOvVS8n + 62.5 56.5 35 1.81 5.1 0.3 0.32
C2f2
YOLOV8n + 77.1 65 39.2 2.92 12.2 0.7 0.33
P2
(Proposed 78.3 71.1 38.8 1.69 8.6 0.6 0.33
model)

software like PowerPoint, precise control over transition effects and
timing allows for seamless, continuous transitions between images,
mimicking the fluidity of drone footage. While this approach may not
encompass the entirety of drone capabilities, it presents a creative and
cost-effective alternative. The video was recorded using the Windows 11
Snipping Tool and saved in mp4 format. With this, the generated video
can be easily uploaded to our framework. Finally, the video was divided
into frames at a rate of 5 FPS (compatible with the analysis we want to
make of each frame) using the ASPOSE web application (ASPOSE,
2024).

2.6. Counting method

In the context of counting insects in soybean crops using video
streams, the ByteTrack algorithm, introduced by (Zhang et al., 2022),
emerges as a valuable tool. Specifically designed for video sequences,
ByteTrack efficiently categorizes detection boxes into high and low-
score classifications, retaining comprehensive information (Zhang
et al., 2022).

Initially, ByteTrack, as covered by (Zhang et al., 2022), establishes
connections between tracks and high-scoring boxes, although occasional
mismatches can occur, often due to factors such as motion blur or oc-
clusion. In order to address these challenges, the algorithm leverages a
pivotal component: the Kalman filter. This filter extrapolates the current
state of frames based on prior estimations and continually refines them
using real-time observations. This dynamic process guarantees precise
tracking of objects over time.

Moreover, ByteTrack's attributes render it particularly advantageous
in this scenario. The algorithm achieves high tracking speeds by effi-
ciently distributing computational resources, ensuring real-time moni-
toring capabilities, according to (Zhang et al., 2022). Consequently,
ByteTrack enables rapid and highly accurate enumeration of insects
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Fig. 9. Mean average precision (mAP) report for the ablation experiment from YOLOvVS.
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Fig. 10. Number of parameters (Par.) report, in millions, for the ablation experiment from YOLOVS.

within the soybean crop environment using a moving camera video.
Encouraging future research, we readily share our datasets and codes
on GitHub.

3. Results and discussion
3.1. Proposed model analysis

Our study compared, as in Table 2, the performance of different
object detection algorithms for the given dataset, shown in Fig. 3.
Among the algorithms evaluated, YOLOv8n, YOLOv8n + C2f2,
YOLOv8n + P2, and the proposed model (YOLOv8n + P2 + C2f2).
Adding P2 and C2f2 to YOLOv8n resulted in the highest overall per-
formance among YOLOv8 models.

Compared to YOLOv8n, adding P2 improved the precision and mAP
values, especially at higher IoU thresholds. The addition of C2f2, on the
other hand, did not significantly improve the performance of YOLOv8n.
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However, when we added both P2 and C2f2 to YOLOv8n, we observed
an improvement in the algorithm's performance, as seen in Fig. 9. The
precision and mAP values improved, especially at higher IoU thresholds,
indicating that the addition of both features can help the algorithm to
better localize and classify objects in images.

Furthermore, adding P2 and C2f2 did not considerably increase
model complexity, as seen in the lower number of parameters in Fig. 10
and FLOPs compared to YOLOv8n + C2f2. We also observed that the
addition of P2 and C2f2 to YOLOvS8n did not result in a noticeable in-
crease in inference time, as seen in the similar values of inference time
between YOLOv8n and the proposed model (YOLOvV8n + P2 + C2f2).
This result suggests that adding P2 and C2f2 simultaneously to YOLOv8n
can noticeably improve the algorithm's performance without compro-
mising its speed or model complexity, indicating that the algorithm
obtained can perform satisfactorily in real-time tasks, which is crucial
for many applications, such as real-time object detection in videos.

Inference on the testing set of the INSECT dataset is covered in
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Fig. 11. Samples of NBSB detection with the proposed model on the INSECT10K7C640_SAT dataset (testing set). True positive cases are indicated when the con-
fidence threshold is greater than or equal to 0.3. In the lower right corner, in blue, we present insects detected or present in the image in question. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. Confusion matrix exposing the results obtained (TP, FN, FP, TN and
IDS), absolute values, in tracking insects along the frames of the provided
video stream.

Fig. 11.

3.2. Analyzing NBSB count via video stream

The results of the video insect detection and counting framework are
summarized in Fig. 12 and exhibits several positive aspects that warrant
recognition.

Regarding false negatives (FN), the proposed framework exhibited a
combined FN count of 243, indicating instances where the model failed
to detect NBSBs that were present in the ground truth, which can lead to
an underestimation of insect populations. While this metric highlights
areas for potential improvement in sensitivity, it is important to note
that the model detected a significant portion of the ground truth, as
evidenced by the true positive (TP) count of 318. In insect detection and
counting, having a framework based on high True Positives (TPs) is
advantageous for several reasons despite the presence of high False
Negatives (FNs). High TPs indicate that the model effectively captures a
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significant portion of the insect population, providing valuable data for
agricultural monitoring.

Firstly, a high TP count ensures that the model accurately represents
the proper distribution and density of insects in the environment. This
information is crucial for assessing the NBSB population, identifying
hotspots of insect activity, and implementing targeted agricultural in-
terventions to mitigate pest damage. Secondly, a system with high TPs
instills confidence in the reliability of the model's output, enhancing its
utility in decision-making processes as high TPs contribute to the overall
reliability and credibility of the data collected.

False positives (FP) were minimized with a count of 32, indicating
instances where the model incorrectly identified non-insect objects as
such or falsely doubled the count in an NBSB. This low FP rate un-
derscores the model's specificity in distinguishing insects from other
environmental elements and in understanding an individual on a tra-
jectory without guessing that it is new, contributing to the overall ac-
curacy of insect counting. Identity switches (IDS), representing cases
where the model incorrectly switched the identity of an object across
frames, were limited to 6 instances. That demonstrates the model's
ability to consistently track individual insects over time, which is crucial
for accurately assessing population counting and subsequent mapping.

The multiple object tracking accuracy (MOTA) score, a comprehen-
sive metric considering FN, FP, and IDS, was calculated at 61.45%. This
significant MOTA score reflects the model's robustness in maintaining
consistent object trajectories despite challenges such as occlusions and
changes in lighting conditions. Such a high MOTA score underscores the
model's reliability and efficacy in capturing the population of insects
when captured on video stream, positioning the model as a promising
tool for real-time insect monitoring applications.

Finally, it is worth noting that in the video stream, there were 38
unique adult NBSBs present and that the proposed model (improved
YOLOvV8 + ByteTrack) was able to track (assign unique IDs on) 40 in-
dividuals, demonstrating in the case in question a certain balance be-
tween summative and subtractive effects, reaching a value slightly close
to the real one (increased by 5.3% of the actual value).

In summary, the results of the video insect detection with improved
YOLOV8 and the counting model with ByteTrack, partially shown in
Fig. 13, demonstrate the framework's effectiveness in accurately iden-
tifying and counting insects on video streams. While there are areas for
improvement, such as reducing false negatives and enhancing sensi-
tivity, the framework exhibits promising performance across various
metrics, highlighting its potential for applications in agriculture and
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Fig. 13. Samples of NBSB counting using the proposed framework (Improved YOLOv8 model + ByteTrack).

ecological pest management. Continued research and development in
this field are critical to further advancing automated insect monitoring
techniques.

Insect pest management in cropping systems brings possibilities to
improve automation techniques to avoid the undiscriminating applica-
tion of pesticides. Knowing more precisely the insect species, and its
distribution throughout a cultivated area can help more sustainable
decisions to be taken in precision agriculture. That can be particularly
true in crops cultivated in large areas such as soybeans. Monitoring
crops for pest detection using aerial images and artificial intelligence
techniques will be a reachable achievements shortly.

The lightweight and enhanced YOLOv8 model presented in this
study goes in the direction of closing this gap. Detecting and counting
NBSB automatically in soybean crops in tropical areas can be dealt with,
and the research opens a path for further improvements and extension to
other insect pests. The next steps of this research will collect more image
field data and focus on parameter optimization for end devices.

3.3. Limitations of the approach

The specific problem of detecting and counting NBSB through drone-
captured images addressed in this research is of great importance for
lowering the use of pesticides in soybean crops since the next steps
would be to control the pests only in areas with their significant pres-
ence. Compared with manual laboring, it would also be a step forward
since precision and costs could be achieved satisfactorily in a short
period.

Our solution proposed here has shown promising results for the
conditions given. However, they should be further tested in more varied
weather, lighting, and crop conditions to be fully tuned before deploying
in an integrated platform. For the problem addressed, i.e., detecting and
counting NBSB, through images with a state-of-the-art solution is a
novelty contribution. Regarding the data used, it is one of the largest
available, and the results are genuinely competitive. However, in the
future, a larger dataset with varied conditions could even be put openly
for other researchers to benchmark the newest advances in this type of
technology. As hardware keeps advancing at processing capacity, we
will see a real-time solution of this kind soon.

A model like this proposal should be trained and tested for each
different crop and a set of significant pests for a particular crop, instead
of trying to have a general pest detector for crops. Also, other critical
sustainable and biological pest management should be considered, with
more extensive benefits. The research model proposed here is a
competitive solution in the scope of automation.
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4. Conclusions

This study introduces a novel method tailored for real-time counting
insect pests on soybean fields, made to the YOLOV8 detection model.

By conducting ablation experiments, we evaluated modifications
upon YOLOVS architecture's performance in detecting NBSB pests in
soybean crops. Our results demonstrate that the modified YOLOv8 with
P2 and C2f2 layers noticeably improved precision and mean Average
Precision (mAP) without increasing model complexity or inference time.
These enhancements excel at higher Intersection over Union (IoU)
thresholds, indicating the algorithm's potential for real-time applica-
tions. True positive instances were reliably identified at a confidence
threshold of 0.3 or higher.

The evaluation of the video insect detection and counting model
(improved YOLOv8 + Bytetrack) reveals promising results for its
application in insect control within soybean crops.

The model exhibits promising insect detection and counting perfor-
mance, as evidenced by the low false positive rate and the limited
number of identity switches (IDS). While there is room for improvement
in reducing false negatives and enhancing sensitivity, the high true
positive (TP) underscores the model's capability to detect insects in the
ground truth accurately. Furthermore, the multiple object tracking ac-
curacy (MOTA) score of 61.45% reflects the model's overall accuracy in
tracking multiple insects across frames. Furthermore, the proposed
model could count (assign IDs on) a number very close to the actual
presence in the scene, that is, 40 out of 38 insects (5.3% higher). These
results collectively suggest that the model holds substantial potential as
a valuable tool in soybean crop management, offering effective insect
monitoring and control.

Extended work should aim to carry out tests with more drone video
sequences, mainly covering other species of insects and developing an
image processing methodology so that each collected frame in the video
can be combined with the drone metadata so that the information
collected can be mapped into a georeferenced orthomosaic capable of
providing valuable information to farmers and researchers in the field.
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