Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/53343
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_FourDecadesThermal .pdf3,34 MBAdobe PDFVisualizar/Abrir
Título: Four decades of thermal monitoring in a tropical urban reservoir using remote sensing : trends, climatic and external drivers of surface water warming in Lake Paranoá, Brazil
Autor(es): Pereira, Alice Rocha
Cicerelli, Rejane Ennes
Almeida, Andréia de
Almeida, Tati de
Koide, Sergio
ORCID: https://orcid.org/0000-0002-8199-5163
https://orcid.org/0000-0002-6387-8254
https://orcid.org/0000-0002-0424-5748
Afiliação do autor: Universidade de Brasília, Departamento de Engenharia Civil e Ambiental
Universidade de Brasília, Instituto de Geociências
Universidade de Brasília, Faculdade UnB Planaltina
Universidade de Brasília, Instituto de Geociências
Universidade de Brasília, Departamento de Engenharia Civil e Ambiental
Assunto: Temperatura da superfície da água
Paranoá, Lago (DF)
Sensoriamento remoto
Data de publicação: 31-out-2025
Editora: MDPI
Referência: PEREIRA, Alice Rocha et al. Four decades of thermal monitoring in a tropical urban reservoir using remote sensing : trends, climatic and external drivers of surface water warming in Lake Paranoá, Brazil. Remote Sensing, [S. l.], v. 17, n. 21, 3603, 2025. DOI: https://doi.org/10.3390/rs17213603. Disponível em: https://www.mdpi.com/2072-4292/17/21/3603. Acesso em: 5 nov. 2025.
Abstract: This study analyzed how external forcings, such as meteorological conditions and inflows, influence the average water surface temperature (WST) of the urban Lake Paranoá, Brasília-Brazil, using both in situ measurements and remote sensing estimates over a 40-year period. The temperature model calibrated for Lake Paranoá with no time lag (0-day delay) presented the following metrics: R2 = 0.92, RMSE = 0.59 ◦C, demonstrating the feasibility of obtaining reliable thermal estimates from remote sensing even in urban water bodies. Simple and multiple regression analyses were applied to identify the main external drivers of WST across different temporal scales. A warming trend of 0.036 ◦C/yr in lake surface temperature was observed, higher than the concurrent increase in air temperature (0.026 ◦C/yr), suggesting enhanced thermal stratification that may impact water quality. The most influential variables on WST were air temperature, relative humidity, and wind speed, with varying degrees of influence depending on the time scale considered (daily, monthly, annual or seasonal). Remote sensing proved to be essential for overcoming the limitations of traditional monitoring, such as temporal gaps and limited spatial coverage, and allowed detailed mapping of thermal patterns throughout the lake. Integrating these data into hydrodynamic models enhances their diagnostic, predictive, and decision-support capabilities in the context of climate change.
Unidade Acadêmica: Faculdade de Tecnologia (FT)
Departamento de Engenharia Civil e Ambiental (FT ENC)
Instituto de Geociências (IG)
Faculdade UnB Planaltina (FUP)
Programa de pós-graduação: Programa de Pós-Graduação em Tecnologia Ambiental e Recursos Hídricos
Licença: Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/ licenses/by/4.0/).
DOI: https://doi.org/10.3390/rs17213603
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro completo do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.