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Highlights

What are the main findings?

e Remote sensing revealed spatial and seasonal heterogeneity in lake surface warming.
e Air temperature, solar radiation, humidity, and wind speed are the main exter-
nal drivers.

What is the implication of the main finding?

e In situ and satellite-derived water surface temperatures reveal climate-driven
lake warming.

e Findings support hydrodynamic modeling and water quality management in urban
tropical reservoirs.

Abstract

This study analyzed how external forcings, such as meteorological conditions and in-
flows, influence the average water surface temperature (WST) of the urban Lake Paranod,
Brasilia-Brazil, using both in situ measurements and remote sensing estimates over a
40-year period. The temperature model calibrated for Lake Paranoa with no time lag
(0-day delay) presented the following metrics: R?> = 0.92, RMSE = 0.59 °C, demonstrat-
ing the feasibility of obtaining reliable thermal estimates from remote sensing even in
urban water bodies. Simple and multiple regression analyses were applied to identify
the main external drivers of WST across different temporal scales. A warming trend of
0.036 °C/yr in lake surface temperature was observed, higher than the concurrent increase
in air temperature (0.026 °C/yr), suggesting enhanced thermal stratification that may
impact water quality. The most influential variables on WST were air temperature, relative
humidity, and wind speed, with varying degrees of influence depending on the time scale
considered (daily, monthly, annual or seasonal). Remote sensing proved to be essential for
overcoming the limitations of traditional monitoring, such as temporal gaps and limited
spatial coverage, and allowed detailed mapping of thermal patterns throughout the lake.
Integrating these data into hydrodynamic models enhances their diagnostic, predictive,
and decision-support capabilities in the context of climate change.
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1. Introduction

Lakes play a crucial role in the global water cycle and act as sensitive indicators of
climate variability and change. Recent studies have documented significant warming
trends in inland waters across diverse climatic regions, with rates ranging from 0.01 °C
to 0.08 °C per year [1-6]. Among the key physical parameters governing lake dynamics,
water surface temperature (WST) is particularly important, as it directly controls thermal
stratification, biogeochemical processes, and overall water quality [1,5,7]. Long-term
variations in temperature have been increasingly associated with climate change, affecting
aquatic ecosystems, ecosystem services, and water resource availability worldwide [1,5,7,8].

The dynamics and consequent spatiotemporal distribution of temperature in lakes
are the result of complex interactions of external forces—solar radiation, air temperature,
relative humidity, wind, precipitation, evaporation, inflows, and outflows [5,7,9-11]. These
factors control energy exchanges at the air-water interface and determine the timing and
intensity of stratification and mixing events, shaping nutrient cycling, oxygen dynamics,
chlorophyll distribution, and the occurrence of harmful algal blooms [12]. When strat-
ification persists, hypolimnetic anoxia can develop, triggering anaerobic processes and
the release of toxic compounds such as ammonia and hydrogen sulfide, as well as resus-
pension of sediments at the thermocline [13-15]. Conversely, destratification promotes
vertical mixing, which may also resuspend bottom material and release nutrients, fueling
eutrophication and algal proliferation [14].

Monitoring these processes is challenging because in situ sampling provides limited
spatial and temporal resolution. In this context, satellite remote sensing has emerged as a
powerful and cost-effective alternative for assessing WST, complementing conventional
measurements [12,16-18]. Over the last two decades, thermal remote sensing has enabled
continuous, spatially distributed WST monitoring across different climatic settings [12,19].
Platforms such as Google Earth Engine (GEE) enhance the capacity to process long-term
and large-scale datasets, supporting analyses of seasonal cycles, warming trends, and
extreme events in lakes, including those in tropical and urban environments [6,20-22].

Among the existing thermal sensors, the Landsat series is notable for combining
100-120 m TIR spatial resolution with multi-decadal continuity and global free access,
making it well suited for capturing spatial heterogeneity inside lakes and long-term WST
monitoring in small to medium lakes [5,19,23]. Studies using GEE and Landsat data have re-
vealed consistent WST increases worldwide in response to climate change, with direct impli-
cations for circulation, oxygen solubility, eutrophication, and ecosystem resilience [24-27].

Lake Paranod is an urban reservoir in Brasilia (Brazil) of high landscape and so-
cioeconomic value. Its catchment is highly urbanized; the lake supplies drinking water
and supports multiple uses, including wastewater dilution, fisheries, navigation, and hy-
dropower. The system has experienced episodes of eutrophication and cyanobacterial
blooms [28-31]. Quantifying the temporal and spatial dynamics of water surface temper-
ature (WST) is therefore essential to anticipate stratification and mixing patterns, assess
vulnerability to water-quality deterioration and harmful algal blooms, and guide more
effective lake management to enhance water security under ongoing climate change.

This study focuses on the temporal evolution of water surface temperature (WST) in
Lake Parano4, a tropical urban reservoir, central Brazil, over a 40-year period (1984-2024).
By integrating in situ measurements with remote sensing data, we aim to identify key
drivers of WST variability and contribute to improved lake management strategies in the
face of environmental change. The specific objectives of this work are to: (1) construct a
consistent, four-decade WST time series from Landsat 5, 8, and 9 data validated with in
situ observations; (2) quantify long-term trends in WST and compare them with concurrent
changes in meteorological forcings; (3) examine the influence of solar radiation, air tem-
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perature, relative humidity, precipitation, wind speed, evaporation, and inflows on WST
at multiple temporal scales; and (4) discuss implications for lake management in tropical
urban environments under climate change.

2. Materials and Methods

The methodological framework integrates remote sensing data and in situ measure-
ments to analyze long-term variations in water surface temperature (WST) and their
relationship with external meteorological and hydrological drivers over a 40-year period
(1984-2024). The approach includes (i) the acquisition and processing of satellite imagery
from Landsat missions, (ii) the compilation of ground-based observations of WST and
meteorological variables, (iii) the calibration and validation of WST estimation models,
and (iv) the application of statistical analyses to assess trends and correlations at multiple
temporal scales (Figure 1).
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Figure 1. Flowchart of the methods used to obtain an equation for estimating surface temperature.

2.1. Study Area: Paranod Lake, a Tropical Urban Reservoir

Paranoa Lake is an artificial reservoir located in Brasilia, Federal District, Brazil, at an
elevation of approximately 1000 m (Figure 2). It drains a watershed of 1034.07 km? and is
characterized by a tropical savannah climate (Aw, Képpen classification). The lake serves
multiple purposes, including public water supply, hydroelectricity, fishing, navigation,
recreation, and effluent dilution. It has an average depth of 12.42 m, a maximum depth of
38 m, a maximum width of 5 km, and a length of 40 km. The estimated hydraulic residence
time is approximately 299 days [32-34].

Paranoad is a dendritic, compartmentalized, and warm monomitic lake in its deep-
est regions, with seasonal regimes of mixing and thermal-chemical stratification. These
processes regulate the vertical distribution of chlorophyll-a, phytoplankton, zooplankton,
dissolved oxygen (DO), and nutrients [30,33,35-38].

Situated within Brazil’s capital, Parano4 is an urban lake bordered by densely pop-
ulated neighborhoods, with over 500,000 inhabitants in its immediate surroundings. It
receives treated effluents from two major wastewater treatment plants—the Northern and
Southern WWTPs—and contains an important abstraction point for public water supply,
located in the Northern Water Treatment Plant, managed by the regional sanitation au-
thority. The lake also plays a key role in providing recreational space and thermal comfort
for the urban population, highlighting its socio-environmental relevance [30]. During the
20162017 water crisis, Paranoa Lake was used as an emergency source of drinking water,
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which emphasized its strategic role in regional water security. Concurrently, the lake experi-
enced eutrophication events due to high nutrient loads, resulting in intense cyanobacterial
blooms that posed risks to both ecosystem integrity and public health [28,30,34,38].
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Figure 2. Map of Paranod lake basin and monitoring sites” location.

2.2. Ground-Based Monitoring of WST, Meteorological and Hydrological Variables

The in situ dataset includes monthly water surface temperature (WST) measurements
at 1 m depth, along with meteorological and hydrological variables. WST monitoring has
been conducted by CAESB (Environmental Sanitation Company of the Federal District)
since 1985 at six representative locations—A4, A5, B, C, D, and E—distributed across the
main branches of Lake Paranoa (Figure 2). Descriptive statistics of the WST recorded at
each monitoring site are presented in Table S1 in the Supplementary Materials.

Meteorological data were obtained from the Brasilia station (code 83377; yellow dot
in map—Figure 2), operated by the Brazilian National Institute of Meteorology (INMET),
which provides long-term hourly time series of air temperature, relative humidity, wind
speed, and precipitation, as well as daily insolation data. Shortwave radiation was esti-
mated from insolation using the Angstrom-Prescott equation, coefficients a = 0.282 and
b = 0.490, calibrated by [39] for Brasilia, Federal District, Brazil, being representative for
the study area (R? of 0.93 and standard error of estimate, 1.52 M] m 2 day!) and ensuring
consistency in the radiation dataset. Although wind conditions vary around the lake due
to local topographic effects [40], the Brasilia station was used given the continuity and
availability of its anemometric records, which is essential for the temporal consistency of
trend analysis in lake—climate interactions [41].

Daily evaporation data were retrieved from two monitoring sites operated by the
University of Brasilia: the Experimental Biology Station (EB; green dot in map—Figure 2)
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with data from 1972 to 1996, and the Fazenda Agua Limpa station (FAL; orange dot in
map—Figure 2) with data from 2000 to 2024. These datasets were analyzed separately,
given their statistically distinct variances and the contrasting settings of the stations—EB
being closer to the lake and more representative of open-water evaporation conditions. The
accurate characterization of evaporation in lacustrine environments is crucial, as it plays a
significant role in latent heat fluxes and thermal stability [42]. Daily and monthly inflow
data were compiled from several gauging stations operated by CAESB and ANA, Southern
Wastewater Treatment Plant (WWTP; pink and purple rhombuses in map—Figure 2),
and tributaries such as Riacho Fundo, Cabega de Veado, Torto, Bananal, and Gama. We
used only the available discharge data, after consistency analysis; no gap-filling was
performed. Details on station codes, operator, and monitoring periods are provided in the
Supplementary Materials (Table S2). Additionally, bathymetric data from Aguiar et al. [43]
were used qualitatively to interpret spatial patterns in WST but were not included as
predictors in the regression models.

2.3. Water Surface Temperature Retrieval from Landsat Imagery

Water surface temperature (WST) in Lake Paranod was estimated for the 1984-2024
period using Tier 1 Collection 2 Level-2 imagery from Landsat 5, 8, and 9. Imagery from
Landsat 7 was excluded due to striping artifacts and data gaps in the study area.

All image filtering and processing were performed in Google Earth Engine [44], where
scenes were selected based on acquisition date, cloud cover (<10%), and intersection with
the lake’s geometry. Cloud and artifact screening used the USGS QA_PIXEL bit-mask to
remove pixels flagged as Fill (bit 0), Dilated cloud (bit 1), Cirrus (bit 2; L8/L9), Cloud
(bit 3), and Cloud shadow (bit 4), and QA_RADSAT to exclude radiometrically saturated
pixels; a shoreline mask was applied to limit mixed-pixel effects. For each scene, surface
temperature was derived from the thermal band (L5: ST_B6; L8/L9: ST_B10), converted to
°C using the scene-specific multiplicative and additive factors and subtracting 273.15.

Surface temperature was extracted for six CAESB monitoring sites (A4, A5, B, C,
D, and E), as well as for the entire lake area. No spatial buffers were used due to the
resolution of the thermal bands (100-120 m). Extracted values were exported to R and
matched with in situ data within a £2-day interval. Linear models were calibrated and
evaluated using all paired data for lags of 0, 1, and 2 days. For each lag, we fitted (i) an all-
samples model and (ii) a filtered model retaining only matchups with absolute error < 2 °C.
This conservative threshold was defined after systematic visual inspection showing that
discrepancies absolute errors greater than 2 °C were consistently associated with residual
cloud, thin haze, or mixed pixels; it follows the principle of conservative filtering in [23]
and aligns with outlier-screening practices for LSWT time series [19], thereby balancing
sample retention and accuracy.

The model with no lag between image and field data showed the best performance
and was used to estimate WST throughout the time series.

2.4. Model Validation and Statistical Analysis of External Drivers

Statistical analyses were conducted in R (version 4.4.3) and RStudio (version 2024.12.1
+563) to evaluate the performance of the WST retrieval model and to quantify the influence
of external drivers on lake surface temperature at multiple temporal scales. Model cali-
bration involved fitting linear regression models between simulated and observed WST
values, using time lags of 0, 1, and 2 days between satellite overpass and in situ sampling.
The best-performing model was selected based on standard metrics: coefficient of determi-
nation (R?), root mean square error (RMSE), mean absolute percentage error (MAPE), and
bias [19].
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Validation of the selected model was performed using the bootstrap method with
3000 resamples [45], implemented via the boot package [46], which enabled internal
validation without excluding data from the calibration series. Calibration and validation
were conducted over the full 1984-2024 period, and only temperature estimates with
absolute errors below 2.0 °C were used in model fitting to minimize the effect of residual
atmospheric noise and image artifacts.

After generating the complete WST series, trend analysis was conducted using the
BFAST algorithm [41,47], which decomposes time series into seasonal (St), trend (Tt), and
residual (et) components, allowing the identification of structural changes and gradual
trends. Statistical significance of trends was assessed through ANOVA (p < 0.05).

To investigate the influence of meteorological and hydrological variables on WST,
Pearson correlation coefficients were calculated between WST and solar radiation, air tem-
perature, relative humidity, wind speed, precipitation, evaporation, and inflows, across
daily, monthly, seasonal (wet/dry), and annual scales. Multiple linear regression models
were developed for the monthly scale, considering evaporation data from both the Experi-
mental Biology Station (EB) and Fazenda Agua Limpa (FAL), due to their different variances
and proximity to the lake. Multivariate analysis was realized on monthly scale due to data
availability. Results were supported by diagnostic plots and exploratory visualizations.

The outputs derived from this workflow allowed not only the reconstruction of
a consistent WST time series but also a robust analysis of its temporal trends and
external influences.

3. Results
3.1. Estimation and Validation of Water Surface Temperature (WST)

In situ measurements collected by CAESB at six monitoring sites revealed a statisti-
cally significant warming trend in the water surface temperature (WST) of Lake Parano4
over the 40-year period from 1984 to 2024. The data indicates a total increase of 1.34 °C,
corresponding to a mean annual warming rate of 0.033 °C/yr (p-value = 1.16 x 10722). This
positive trend was consistently observed across all monitoring points (Figure 3), varying
from 0.027 °C/yr (B) to 0.038 °C/yr (A5), reinforcing the spatial heterogeneity of the lake’s
thermal response to long-term climatic and environmental changes.

To estimate WST from satellite data, linear regression models were calibrated using
Landsat-derived surface temperatures and field observations collected at 1 m depth. The
models were tested with time lags of 0, 1, and 2 days between image acquisition and
in situ measurements. For each lag, we fitted two models: one using all matchups and
another restricted to matchups with absolute error < 2 °C—an error associated with
residual cirrus and/or sunglint even after cloud masking. Figure 4 shows that the filtered
models (solid lines) exhibit systematically steeper slopes indicating that residual clouds
and/or sunglint in the unfiltered sets may biases simulated temperatures, overestimating
them through increased reflectance. This effect intensifies at higher temperatures, where
differences between fits can reach approximately 1.5 °C.

Across the 0-2-day lag models, we retained 12, 27, and 41 image matchups, re-
spectively, after QA_PIXEL bit-mask and QA_RADSAT filter (Table 1). Filtering by

lerror | <2 °C had negligible impact at 0 d (still 12 scenes) and removed only one scene
at 1 d and one at 2 d. Most matchups came from Landsat 8, followed by Landsat 5 and
Landsat 9. Seasonally, the sample is dominated by the dry period, reflecting greater scene
viability under lower cloudiness, whereas wet-season scenes accounted for 15-20% of the
total in each model. Although the 2-day lag provides the largest number of matchups, the
0-day, lerror| <2 °C configuration best represents the intended matchup condition (near-
synchronous satellite-in situ observations) while minimizing contamination-driven bias
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and achieved the best performance metrics among the tested lags (highest R? and lowest
RMSE, Figure 4). Consequently, we adopt the 0-day filtered model for WST estimation and
bias correction throughout the time series, balancing representativeness (no lag) and data
quality (conservative outlier removal).

A4 || A5 |
0.032°Clyr;P =9.15 x 1072 0.038°Clyr;P < 0.01
[ ] [ ]

30
25
20

Observed temperature (°C)

1990 2000 2010 2020 1990 2000 2010 2020

Figure 3. Long-term trends of observed WST at individual monitoring sites in Lake Paranod
(1984-2024). Linear regression slopes (°C yr~!, red lines) denote warming rates.
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Figure 4. WST models under different lags (0-2 days), showing fits for all samples (dashed lines)
and for matchups filtered by absolute error < 2 °C (solid lines). Divergence increases at higher
temperatures and is associated with residual cloud/thin-haze and sunglint contamination in the
unfiltered sets. Additional metrics, including sample size, residual standard error, bias, and MAPE,
are provided in Table S3 of the Supplementary Materials.

The model using data without temporal lag (0-day) demonstrated the best perfor-
mance, achieving R? = 0.92, RMSE = 0.59 °C, MAPE = 0.021, and near-zero bias (Figure 5).
This configuration outperformed lagged models by approximately 0.3 °C in RMSE and was
selected for simulating WST throughout the entire time series (Table S3). The best-fitting
model (0-day lag) was applied to estimate the full WST time series, which served as the
basis for subsequent analyses.
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Table 1. Scene counts for WST calibration under 0-2 day lags, for all samples and for the subset
with absolute error < 2 °C. Totals are stratified by sensor (Landsat 5, 8, and 9) and by season (dry
and wet).

Number of Images

Total Landsat 5 Landsat 8 Landsat 9 Dry Period Wet Period
0 d: all samples 12 2 9 1 10 2
0 d: abs error < 2 12 2 9 1 10 2
1 d: all samples 27 6 18 3 22 5
1 d: abs error < 2 26 6 17 3 21 5
2 d: all samples 41 18 20 3 35 6
2 d: abs error < 2 40 18 19 3 34 6
28 >

- n =43 (delay = 0d)

€ 6 y = 0.75330x + 5.06655

o R?=0.92 RMSE = 0.59°C o

5 s _ Monitoring

3 BIAS = -8.18x10-5 MAPE = 0.021 soinls

o Ad

€24 A5

8 '8

- rC

o D

c E

222

(®)

20 .
20 22 24 26 28 30

Simulated Temperature - GEE (°C)

Figure 5. Graph of calibration (n = 43) of WST Paranoa lake model for monitoring points A, B, C,
D and E during 1984 to 2024 for the model with no lag (0-day delay). The black line represents the
linear regression model fitted to the samples.

The adopted regression model (WSTegtimated = 0.75330 X WSTy 4ndsat + 5.06655) was
validated through bootstrap resampling with 3000 iterations, ensuring statistical robustness
without data exclusion. The resulting 95% confidence intervals for R? (0.8513-0.9565)
and RMSE (0.4950-0.7214), combined with low bias (—0.0017) and standard error (0.03),
confirmed the model’s precision and reliability in estimating lake surface temperatures
across multiple decades and variable atmospheric conditions (Table 2). Simulated WST
closely followed both seasonal cycles and interannual variability in the historical records,
establishing a solid basis for the retrospective thermal analysis of the lake (Figure 6). It
should be noted that horizontal linear patterns in the observed WST data (Figure 6) from
1990 to 1999 are probably associated with measurement errors, which may have affect both
the model fit and WST estimates.

Table 2. Metrics and equation obtained through linear regression on validation of WST Paranoa lake
model using bootstrap (adopted model: WSTgtimated = 0.75330 X WST 4pgsat + 5.06655).

Metrics 95% Confidence Interval Bias Std Error
R? (0.8513, 0.9565) —1.69 x 1073 0.03
RMSE (0.4950, 0.7214) —1.69 x 102 0.06
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Figure 6. Time series of observed and simulated temperature (adopted model: WSTqgtimated =
0.75330 x WSTpandsat + 5.06655).

The model was then applied to selected Landsat images to estimate the spatial distri-
bution of WST in representative years for both the wet and dry seasons. Dates were selected
based on the presence of wet-dry season imagery that maintained sufficient spatial cover-
age after cloud/artifact screening. The simulations for February and August of 1986, 2000,
and 2023 (Figure 7) illustrate the characteristic seasonal patterns. For 2009, images from
March and July are presented, since during 2009-2015 period no year provided suitable
scenes for both February and August.

During the dry season, surface temperature gradients aligned with the lake’s
bathymetry [43]: deeper regions exhibited lower WST, while shallower branches consis-
tently showed higher temperatures [48-50]. In contrast, wet-season distributions revealed
more spatially variable isothermal patterns. Notably, Landsat 5 TM images from 1986, 2000,
and 2009 were affected by radiometric noise, limiting the accurate plotting of isotherms
and potentially affecting spatial consistency.

Additional spatial analyses based on selected images revealed localized thermal
anomalies, particularly in branch A, where linear structures such as bridges appeared
to coincide with elevated WST during the wet season. Spatial instability in isotherms
was more pronounced in wet-season images from 2023, likely influenced by atmospheric
interference such as thin haze, cirrus clouds, or sunglint, no rainfall was recorded on
the image acquisition date or during the preceding four days. Wind conditions recorded
during image acquisition suggest low-speed, southeastward flows, which support the
interpretation of minimal wind-induced surface variability. A detailed account of spatial
patterns and in situ measurements of wind conditions (2023 year) is provided in Figure 7.

3.2. Temporal Trends in Water Surface Temperature and External Forcings

Monthly variability patterns (Figure 8) reveal distinct seasonal signals and differing
statistical behaviors among variables. WST presents low interquartile dispersion and
limited extreme values, suggesting strong thermal inertia and seasonal stability across the
40-year record. In contrast, air temperature exhibits wider distribution and more frequent
outliers, while relative humidity displays a left-skewed pattern, typical of Brasilia’s semi-
humid tropical climate.

Trend analysis using the BFAST algorithm allowed decomposition of each time series
into seasonal, trend, and residual components (Figures S1-59). Statistically significant
positive trends were detected in WST (3 =0.02, p = 8.17 x 10~13), air temperature (3 = 0.016,
p = 0.00), and solar radiation (3 = 0.02, p = 0.001), indicating an increase in both thermal
input and lake temperature over time. Conversely, decreasing trends were identified for
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wind speed, relative humidity, evaporation (FAL station), and stream inflows, highlighting
potential long-term shifts in atmospheric and hydrological dynamics.

25 February 1986 04 August 1986
% <
- -
< fio
[P = .
) o
ia "
S
Py =
&
.4 !
16 February 2000 10 August 2000

12 March 2009 02 July 2009

-;\— ‘w‘:&
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225°7
»
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Figure 7. Simulated spatial distribution of water surface temperature (WST) in Lake Paranoa for wet
season (February or March) and dry season (July or August) of 1986, 2000, 2009, and 2023, using the
calibrated Landsat-based regression model (0-day lag). Dates were selected based on the availability
of wet—dry season scenes that retained adequate spatial coverage after masking. Thermal patterns
highlight seasonal variation, with warmer temperatures in shallower branches during the dry season.
Radiometric noise affected the 1986, 2000, and 2009 images (Landsat 5 TM), and localized thermal
anomalies were observed near bridge structures in branch A during February 2023. Blue arrows
indicate the magnitude and direction of wind vectors.
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Figure 8. Monthly boxplot of water surface temperature (WST), solar radiation, air temperature,
relative humidity, wind speed, precipitation, evaporation (EB and FAL stations), and inflow. The
boxes indicate the interquartile range with the median.

Evaporation datasets from the EB and FAL stations show notably different behaviors.
The EB series, monitored near the lake at 1003 m, reflects lake evaporation more directly,
while the FAL series, collected at 1080 m over vegetated terrain, reflects soil-vegetation
evapotranspiration. These differences are evident in their monthly distribution and trend
components and justify the separate treatment of both datasets in later modeling efforts.

Sudden peaks in variables such as wind speed, rainfall, and inflows are preserved
in the analysis and may reflect episodic meteorological or hydrological disturbances. For
inflows, although an overall decreasing trend was observed, sharp positive anomalies
occurred, likely linked to isolated storm events or basin-specific pulses. The progressive
increase in solar radiation suggests higher surface energy availability, which, together with
air temperature, likely contributes to the observed WST trend.

The combination of distribution patterns and temporal trends outlined in Figure 8
provides a statistical foundation for interpreting WST behavior across multiple scales.
These results offer essential context for correlation and regression analyses, particularly at
the monthly scale where meteorological variability most closely aligns with the satellite-
derived WST dataset used in this study.

3.3. Multiscale Correlation Analysis Between WST and External Forcings

On a monthly time scale, the main drivers of variation in the lake’s average water
surface temperature (WST) are air temperature (R? = 0.43, p < 0.01), relative humidity
(R? =0.28, p < 0.01), and wind speed (R? = 0.23, p < 0.01). Statistically significant positive
correlations (p < 0.05) were also identified between WST and solar radiation, precipitation,
and inflow. These relationships are detailed in the correlation matrix provided, which
highlights the dominant role of atmospheric drivers in modulating WST at this temporal
resolution (Figure 9).

The distribution of correlation values across variables emphasizes a consistent pattern
in which air temperature exerts a positive control on WST, while wind speed is negatively
associated, reflecting its role in inducing surface cooling and vertical mixing. This con-
trast is especially evident in periods of reduced atmospheric instability, such as the dry
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season, when air temperature and wind speed present stronger correlations with WST
(R? = 0.51 and R? = 0.42, respectively) than during the wet season. At an annual resolution,
both variables continue to dominate the correlation structure, maintaining values above
R? = 0.45. Correlation results at daily, seasonal, and annual resolutions are presented in the
Supplementary Materials (Figures S10-S13).
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Figure 9. Simple Correlation between external forcings and Water Surface Temperature on a monthly
scale. Linear regressions (red, blue, and green lines) represent the relationship between the ana-

lyzed variables.

Graphical results support these findings and reveal that, although other variables
such as precipitation and evaporation contribute to thermal variation, their correlations
with WST are notably weaker or inconsistent. A dedicated analysis considering only non-
zero precipitation values further reduced R? values (Figure S14), confirming the limited
explanatory power of rainfall in this context. Similarly, evaporation—whether measured at
the EB or FAL stations—did not display any statistically significant linear relationship with
WST at any temporal scale.

These complementary analyses reinforce the interpretation that WST dynamics in
Lake Paranod are most directly modulated by atmospheric temperature and wind-induced
turbulence. The monthly results serve as the central basis for subsequent regression
modeling, given their statistical strength and compatibility with the temporal resolution of
the satellite-derived dataset.

3.4. Key Drivers of Water Surface Temperature Across Temporal Scales

Multiple linear regression models were developed using monthly-averaged data to
quantify the combined influence of meteorological and hydrological variables on the water
surface temperature (WST) of Lake Paranoa. Two separate models were constructed, each
incorporating solar radiation, air temperature, relative humidity, precipitation, and wind
speed, but differing in the evaporation dataset used: one model included evaporation data
from the EB station, and the other from the FAL station. Complete regression results are
presented in Tables 54-S7 (Supplementary Materials).
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The model incorporating evaporation from the EB station yielded an adjusted R?
of 0.64 and a standard residual error of 1.16. In this configuration, solar radiation, air
temperature, and relative humidity were the only variables that significantly contributed to
explaining WST variability. Their removal from the model resulted in decreased explanatory
power (reduced R?) and increased residual error, indicating their central role in modulating
surface thermal behavior. By contrast, precipitation, wind speed, and EB evaporation did
not show statistically significant effects (p > 0.48), and their exclusion produced negligible
changes in model performance.

The alternative model using FAL station evaporation achieved a stronger fit, with an
adjusted R? of 0.80 and a residual error of 0.76. This improvement reflects greater internal
consistency among the predictors and a closer statistical alignment with observed WST
patterns. As in the previous model, solar radiation, air temperature, and relative humidity
emerged as the only significant predictors. Precipitation, wind speed, evaporation, and
inflow did not contribute meaningfully and were statistically non-significant (p > 0.05).

Together, the two models indicate that, at the monthly scale, WST in Lake Paranoa is
primarily driven by atmospheric variables directly linked to energy and moisture exchange:
solar radiation, air temperature, and relative humidity. The consistent lack of significance
for other variables across both models suggests that, for predictive purposes at this reso-
lution, the inclusion of additional hydrological drivers such as evaporation and inflow is
unnecessary. These findings support the use of simplified atmospheric models in thermal
forecasting applications, particularly in urban tropical lake systems where data availability
may be limited.

4. Discussion

The water surface temperature (WST) is a critical indicator of climate variability and
a key driver of physical and biogeochemical processes in lakes [14]. In urban tropical
reservoirs, where anthropogenic and climatic pressures converge, understanding WST
dynamics is essential for the management of aquatic environments as it can be used to
understand and predict periods of stratification and mixing, cyanobacterial growth and
blooms [8,51]. WST is an important parameter used in the study and modeling of the energy
balance, hydrological cycle, evapotranspiration, physical, chemical and biological processes
because it is closely correlated with the processes occurring at the water-atmosphere
interface, and as an indicator of climate change [14].

Lakes” hydrodynamics, and hence WST, are the result of combined effects of external
factors. Depending on local characteristics, there may be dominant forces that seasonally
drive hydrodynamic processes [52,53]. Based on these understandings, this study analyzed
four decades of WST in Lake Paranod using remote sensing and in situ data, demonstrating
the effectiveness of satellite imagery to detect long-term warming trends and to identify
the key external forcings [8,54].

4.1. Water Surface Temperature and External Forcings

The remote estimation of WST using Landsat thermal imagery proved accurate and
consistent with findings from other tropical systems [19,55]. The calibration model based on
a zero-day lag between satellite acquisition and field data yielded high agreement (R? = 0.92;
RMSE = 0.59 °C), validating its applicability for long-term thermal monitoring. No spatial
buffers were applied due to the thermal bands’ native resolution (100-120 m), which already
integrates temperature over a broad area. Scenes with atmospheric artifacts, such as thin
clouds or sunglint, were filtered to enhance accuracy [56,57]. The use of Google Earth
Engine for automated processing and the application of bootstrapping (3000 resamples)
added statistical robustness [45]. These procedures enabled the construction of a 40-year
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historical WST dataset with sufficient spatiotemporal resolution to capture seasonal and
long-term variability.

A significant warming trend of 0.036 °C/yr was identified for Lake Paranod, following
the global trends. Notably, WST in Lake Paranoa is rising faster than air temperature
(0.026 °C/yr), aligned with findings in other urban and eutrophic lakes [3,58]. Some studies
showed WST warming trends which ranged from 0.012 °C/yr to 0.083 °C/yr [2,3,6,58-60].
Huang et al. [3] simulated 91 large lakes in China to assess their warming trends. 84% of the
lakes showed an increasing trend, in the order of 0.053 °C/yr. Air temperature, downward
longwave radiation and wind speed changes were the forces that most affected the water
surface temperature. Given the combined effect of these forces on WST, the authors
observed that approximately 42% of these lakes have their surface temperature rising faster
than the air temperature, which was also observed by Schneider et al. [58] for six lakes in
California. Sobrino et al. [2] evaluated the warming trends of the 10 largest lakes in the
world, located in Asia, America, and Africa, which ranged from 0.012 °C/yr to 0.083 °C/yr.
Coats et al. [59] observed a warming trend of 0.015 °C/yr for lake Tahoe in California.

Rising air temperatures enhance WST and promote more stable stratification [61].
In the case of Lake Paranod, air temperature is correlated with the increase in the lake’s
average water surface temperature (WST) across all analyzed time scales (daily, monthly,
wet season, dry season, and annual). However, during the wet season, this influence
weakens. This phenomenon is likely due to increased cloud cover and reduced direct
solar radiation, which in turn lead to lower air temperatures; the larger inflow volume
increases the lake’s thermal capacity, causing it to respond more slowly to variations in air
temperature; more frequent and intense rainfall, as well as surface runoff, which contribute
to cooling the lake’s surface; wind, rainfall, and inflows that enhance water turbulence and
circulation, promoting a more uniform temperature distribution.

Relative humidity plays a key role in regulating secondary processes, such as la-
tent heat fluxes/evaporation; in other words, it does not provide energy directly to the
lake [62,63]. Therefore, observed seasonal increase in relative humidity may be associated
with a reduction in the evaporative cooling of the lake, reinforcing stratification [42,64,65].

Increasing solar radiation and declining wind speed also contributed to thermal accu-
mulation and stability in the lake. A reduction in wind speed of approximately 0.48 m/s
between 2000 and 2024 may indicate the presence of the “terrestrial stilling” phenomenon,
reported in various mid-latitude and tropical regions [66,67]. Reductions on the order of
0.3 m/s have been reported and associated with increased surface roughness, rising aerosol
emissions [66-68], and with urbanization [69-71]. Wind stilling may lead to stronger
thermal stratifications by weakening air-water turbulent exchange and reducing sensible
and latent heat losses, thereby enhancing surface heat retention [72], this mechanism is
consistent with the increasing seasonal influence of wind detected. Therefore, a more
detailed investigation of the wind speed time series is recommended to assess and further
characterize the occurrence and drivers, including the rising urbanization in Paranod lake
basin, of this phenomenon in Brasilia.

Wind'’s contribution to WST increases with time scale, becoming the most influential
driver on the annual scale (R? = 0.49). Wind induces turbulence and vertical circulation,
mixing water layers. While on short time scales this mixing may be negligible or masked
by other factors, its cumulative effect becomes clearer over monthly and annual periods.
During the dry season, wind’s influence intensifies, due to higher solar input, stronger ther-
mal gradients, lower humidity (enhancing evaporation), and reduced inflows (decreasing
thermal buffering). These conditions allow wind to act more effectively on lake dynamics.

Also, it is well known that wind speed and direction fields are not uniform in space
and time [40,73-75]. Therefore, the continuous action of wind over the different branches of
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the lake can generate differentiated horizontal and vertical circulation patterns, distribute
heat and affect the WST of the lake. In this context, it is essential to study the relation
between WST and the wind speed in every branch of lake Paranoé since they have distinct
hydrodynamic behaviors and are influenced by different wind speed fields [32,40].

The low correlations found, or the absence thereof, for precipitation, evaporation, and
inflow may also indicate the spatial or temporal variability of the analyzed variable in
relation to WST, since in this study the analyses were conducted using average values for
the entire lake. Therefore, it is essential to continue monitoring WST in the lake through
conventional in situ measurements, as well as by using satellite imagery and remote sensing
techniques to assess the spatial variability of WST and the effects of these variables on each
branch of the lake separately.

Overall, the multiscale analysis confirmed that air temperature, solar radiation, and
relative humidity are the dominant drivers of WST. Air temperature showed the strongest
correlations at monthly and annual scales, while wind speed exerted a more seasonal
influence, particularly in the dry season [61]. Relative humidity modulated latent heat ex-
change, reinforcing the effects of temperature and radiation [13,42]. Although precipitation,
evaporation, and inflows showed statistical significance in some tests, they did not emerge
as robust predictors. These variables may influence WST locally or episodically, and their
weak correlation may reflect spatial decoupling between measurement locations and WST
response zones [76].

Multiple linear regression models confirmed the importance of atmospheric drivers.
The best-performing model (adjusted R? = 0.80) included solar radiation, air temperature,
and relative humidity as significant predictors. Wind speed and hydrological variables
were not retained due to lack of statistical significance, likely due to collinearity or spa-
tial heterogeneity [10]. These findings support the use of simplified models for thermal
prediction in urban tropical lakes, especially when aiming to inform management and
modeling tools.

From a physical perspective, the lake surface energy balance is governed by radiative
components—shortwave radiation (SW) and longwave radiation (LW)—and by turbulent
fluxes of latent heat (LE) and sensible heat (H). The seasonality and variability of these fluxes
directly control stratification, mixing, and therefore the evolution of WST. Increases in SW
and LW raise the net heat gain, whereas LE and H—governed by air humidity/temperature
gradients and wind speed—act as the main pathways of energy loss [5,12,77].

In this manuscript, the correlations between WST and meteorological variables (air
temperature, relative humidity, wind speed, and SW derived from insolation) can be
interpreted as proxies for evaluating the lake’s energy balance. In summary, SW captures
radiative input; cloud cover (implicit in SW variability) modulates LW; air temperature
represents H; and wind and relative humidity regulate LE.

Our results align with the expected sign and seasonality of the governing fluxes,
and the literature indicates that LE often dominates the cooling budget, especially dur-
ing dry and windy periods, whereas net radiation explains most of the warming at sea-
sonal scales [5,14,78]. Under conditions of low relative humidity and increased wind
speed—typical of the dry season in the region—turbulent losses via latent heat flux (LE)
increase, which favors cooling of the surface layer and weakens the stratification. LE is
a dominant cooling pathway whose magnitude increases with wind speed and vapor-
pressure deficit (i.e., low relative humidity), while H depends on the air-water temperature
gradient [10,22,79].
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4.2. Limitations

Some limitations were noted, included: (i) sparse calibration points and gaps in the im-
age dataset; (ii) the use of spatially averaged WST values; (iii) meteorological data were ob-
tained from off-lake stations; and (iv) atmospheric interference in thermal remote sensing.

Irregular satellite acquisition dates and the limited number of in situ—satellite
matchups used to calibrate the WST retrieval can reduce representativeness, particularly
during the summer (wet season). Beyond sample size, uneven sampling intervals and gaps
may also affect both the BFAST decomposition and the correlation analyses with external
forcings, introducing noise to the estimated trend and seasonal components, affecting
breakpoint detection and biasing seasonal amplitude [80]. Scenes concentrated in the dry
season can reduce the robustness of correlations with meteorological and hydrological
drivers by biasing the strength of statistical associations.

In the wet period, when air and water temperatures are typically higher, the calibration
set provides fewer observations, which may weaken the model’s ability to characterize
temporal variability and degrade performance under warm conditions. This issue is espe-
cially relevant for the 1990s, when episodes of eutrophication likely elevated WST [81-83],
yet the scarcity of usable scenes constrained calibration, thereby limiting the robustness of
the retrieval. Accordingly, we acknowledge limitations in the model’s performance with
respect to seasonality and eutrophication processes, owing to temporal gaps arising from
irregular spacing between viable images, monthly-scale observation intervals, and missing
data within the time series.

The temperature series (observed + simulated) was filled in by considering the images
selected through visual inspection. Images containing cloud interference, especially cirrus
clouds and sunglint that were not captured by the quality band and/or cloud filter, and
patterns similar to those associated with high errors in model calibration were manually
removed and disregarded.

The estimation of surface temperature involves several problems and limitations:
(i) estimating emissivity is complex and involves uncertainties due to spectral hetero-
geneities, including in water bodies; (ii) atmospheric interference affects the estimation of
the received radiance; (iii) masks may fail to detect all atmospheric interferences, such as
thin haze and cirrus clouds, resulting in pixels with residual interference; and (iv) orbital
variations may cause the sunglint effect [56,57].

In addition, the resampling of Landsat 5, 8 and 9 imagery can introduce artificial
spatial detail and increase the likelihood of mixed pixels, especially along shorelines or in
small water bodies, potentially biasing temperature estimates. In order to avoid the edge
effect and the sampling of an extensive area, no buffer was used in the data acquisition of
the selected points.

The analysis was carried out considering the mean surface temperature of the lake,
so the influences discussed in the results refer to average changes in the lake. However,
the lake has different characteristics per compartment (arms and central) and therefore
receives and responds differently to external forcings depending on the compartment. It is
therefore important that, when a larger time series of observed WST is available for each
compartment, these analyses should be carried out by arm of Lake Paranoa.

It is important to note that variables such as evaporation, precipitation, and inflow
exhibit greater spatial variability. As a result, their relationship with water surface tempera-
ture (WST) may not be fully captured in the present analyses, which are based on spatially
average data. The influence of these variables may act more locally or at specific locations
within the lake.

Inflows from WWTP effluents and tributaries can exert localized control on WST.
Effluent discharges are typically warmer than lake water and generate surface thermal
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plumes, whereas tributaries often contribute cooler water. In Lake Parano4, for example,
conditions in the Riacho Fundo arm reflect the combined influence of the WWTP outfall
and the tributary input, favoring greater thermal stability and thus stronger stratification.
In this context, purely statistical regressions are challenging, owing to collinearity among
drivers, shoreline mixed pixels at thermal resolution, and nonlinear advection/stratification
processes. A more robust approach is to pair branch-specific inflow records (Riacho Fundo)
with co-located observed temperatures to test their interrelationships and to simulate the
separate and joint effects of each source using 3D hydrodynamic modeling.

Additionally, the available observed variables analyzed were measured at a greater
distance from the lake, which may have influenced the analysis and the correlations.
For example: Brasilia is characterized by convective rainfall, so the rainfall measured at
the INMET station may not represent the rainfall over Lake Paranod, thus affecting the
correlation between WST and rainfall.

Beyond local meteorology, large-scale climate modes (e.g., ENSO and the SAMS/SACZ),
which are not addressed in this study, drive interannual variability by altering cloudiness,
humidity, and wind regimes over central Brazil, thereby modifying the radiative and the
turbulent heat fluxes at the lake surface. Such climate linkages imply that interannual
changes in WST can partly reflect remotely forced anomalies in radiative and turbulent
fluxes [84]. Incorporating these modes would improve the attribution of WST variability to
specific climate drivers.

We emphasize that the meteorological variables used here function as proxies for
heat-flux terms, not direct flux measurements. This has implications: (i) the heat budget
is not explicitly closed; (ii) irregular image dates and seasonal sampling bias (greater
dry-season coverage) may over-represent radiative control and under-represent advective
terms; and (iv) collinearity among predictors (e.g., air temperature, downward longwave
radiation, and humidity) limits causal separation. Accordingly, correlations should be read
as physically consistent evidence, rather than quantitative partitioning of fluxes.

The applied technique is replicable in other urban settings; however, because the
model is empirical, it requires site-specific calibration with in situ measurements, as the
simulated—-observed relationship depends on each lake’s thermal variability. Extrapolating
the model to other urban lakes should therefore be undertaken with caution. The physical
mechanisms underlying these relationships—energy exchange at the air-water interface,
and modulation of stratification stability—are generalizable across lakes sharing similar
climatic regimes, morphometry, and anthropogenic pressures. Thus, while the method-
ological framework and process-based inferences are applicable to other tropical urban
reservoirs, WST model parameters must be calibrated locally [5,7,9].

Despite these challenges, the results support the integration of satellite-derived WST
into hydrodynamic and water quality models, particularly for simulating stratification,
mixing, and oxygen dynamics under changing climatic conditions [85-88]. Continued
monitoring and refined modeling efforts at sub-basin scale are recommended to enhance
predictive capacity and support water management strategies.

4.3. Management Implications and Future Perspectives

Remote sensing data, such as water surface temperature (WST), can be integrated
with other datasets, such as meteorological data, for use in numerical modeling, e.g.,
hydrodynamic, watershed, and water quality models. Both water surface temperature and
external forcing variables are essential components for modeling processes [89].

The retrieval of WST through remote sensing in water bodies with large spatial extent
and thermal variability, such as Lake Paranod, combined with in situ measurements, enables
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broader spatial and temporal coverage, facilitating the detection and analysis of thermal
patterns, trends, seasonal variations, and extreme events [90].

WST is intrinsically linked to thermal and chemical stratification, internal circulation,
gas solubility, and biogeochemical processes, making it a key variable in hydrodynamic
and water quality modeling. Understanding how WST responds to the external forcings,
how it affects the dynamics of the aquatic ecosystem, and how this information can be im-
plemented in mathematical modeling enhances the diagnostic, predictive, and forecasting
capabilities, especially when considering climate change and water resource management
contexts [86,87].

High-resolution satellite-derived WST data can improve the spatial accuracy of simu-
lations by reducing discrepancies between observation scales and model grid resolution.
Also, estimated WST data can be employed as spatially distributed initial conditions for
temperature across the entire lake, as well as for calibration and validation of hydrodynamic
and water quality models [85-88].

The identification of air temperature, solar radiation, and relative humidity as the
primary drivers of WST variability provides an actionable basis for reservoir management
in Lake Paranod. Integrating high-resolution meteorological forecasts into hydrodynamic
and water quality models can allow short-term predictions of stratification events and
guide preventive measures such as artificial mixing or withdrawal.

The observed long-term warming trend suggests that nutrient load thresholds may
require revision to mitigate the risk of harmful algal blooms under warmer conditions. The
progressive reduction in wind speed may require site-specific circulation interventions in
deeper branches to prevent hypolimnetic anoxia.

Spatial heterogeneity in WST also highlights the importance of branch-specific moni-
toring, informing localized measures. Incorporating routine remote sensing-based WST
monitoring into decision-making frameworks would enable near-real-time detection of
atypical warming events, supporting faster and more effective responses.

Future perspectives, given this study’s findings and limitations, include:

e Improve automation and reproducibility of WST retrievals by defining and imple-
menting a lake-specific atmospheric-correction strategy for cirrus clouds and sunglint.

e  Acquiring water temperature and meteorological data closer to the lake and, where
necessary, at higher temporal frequency, enabling analysis of external forcings on both
the central basin and the individual branches.

e  Quantify the surface heat budget and large-scale climate drivers: compute and validate
the main air-water heat-flux components, net shortwave and longwave radiation,
sensible and latent heat fluxes, to better represent air-water energy exchange. In
parallel, incorporate larger-scale climate factors (e.g., ENSO/ONI, PDO, AMO) to
contextualize interannual-decadal variability and extremes.

e Examining heat-budget variables—sensible heat flux, latent heat flux, and longwave
radiation— to improve the predictive skill of WST models.

o Integrating satellite-derived temperature fields into 3D hydrodynamic and ecological
models to simulate stratification dynamics, nutrient cycling, and algal/cyanobacterial
blooms under different climate and land-use/land-cover scenarios, as well as to test
potential management interventions (e.g., artificial mixing or withdrawal).

e  Assimilate satellite-derived WST into 3D hydrodynamic model to quantify the con-
tributions of external forcings—including heat fluxes—to WST variability and long-
term trends.
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5. Conclusions

This study aimed to analyze the influence of external forcings (meteorological and
inflow) on the average water surface temperature (WST) of Lake Paranod. The estimation
of WST using imagery from Landsat 5, 8, and 9 satellites enabled the construction of a
historical time series with greater spatial and temporal coverage, revealing well-defined
seasonal patterns and a warming trend over recent decades. Landsat 7 scenes were excluded
because striping artifacts and coverage gaps over the lake that compromised data quality
and continuity.

The observed warming trend of average WST in the lake (0.036 °C/yr) is higher than
that of air temperature (0.026 °C/yr), reflecting the impact of global warming. The main
external forcings found to be correlated with WST were air temperature, wind speed,
relative humidity, and solar radiation. At shorter time scales, such as daily and monthly,
air temperature, wind speed, and relative humidity showed significant correlations with
changes in average WST. On monthly and seasonal scales, air temperature and wind
presented significant correlations; on an annual scale, wind stood out as the most influential
factor due to its continuous action.

The analysis also revealed a decreasing trend in wind speed since 2000, which may be
contributing to the intensification of thermal stratification in the lake. Stronger stratification
may limit turbulence and vertical mixing, negatively affecting water quality.

Although statistically significant correlations were identified, the R? values found
were generally moderate. This may be partly explained by the use of lake-wide average
WST values, which may have masked more localized spatial variations across the different
branches of Lake Paranod, each of which exhibits distinct hydrodynamic behaviors.

This context highlights the importance of continuing WST monitoring—both con-
ventional and through remote sensing—and of subsequently analyzing the correlations
between external forcings and WST for each compartment of the lake. The integration of
these datasets with numerical modeling will enhance the understanding of the lake’s hydro-
dynamic and biogeochemical processes, as well as strengthen predictive and management
capabilities in the face of climate change.

Considering the limitations of the present study, future perspectives and sugges-
tions include:

i improving automation and reproducibility of WST retrieval processes;

ii. defining a strategy and implementing atmospheric correction for cirrus clouds and
sunglint over the lake to automate the estimation process;

iii. analyzing wind influence on lake thermal dynamics by incorporating additional de-
scriptors such as fetch length, wind direction, persistence, and spatial heterogeneity
of wind fields;

iv. expanding data acquisition and monitoring to evaluate these relationships between
variables within each lake branch.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs17213603 /s1, Table S1. Descriptive statistics (mean, standard
deviation, minimum, maximum, and interquartile range) of the water surface temperature (WST)
recorded at each monitoring site (A4, A5, B, C, D, and E) and for the daily lakewide average.
Results are presented separately for the wet and dry seasons, as well as for the full time series
(1984-2024). Table S2. Monitoring variables used in this study, including frequency, observation
stations, responsible operators, and periods of data availability. The dataset integrates meteorological,
hydrological, and limnological parameters used for modeling and statistical analyses of water surface
temperature (WST) in Lake Paranoa from 1984 to 2024. Table S3. Tested models with 0, 1 and 2 day
delay, with absolute errors lower than 2 and all samples. Table S4. Multiple regression model results
assessing the influence of meteorological and hydrological variables on WST at monthly scale. Table
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S5. Model including EB evaporation (coefficients, p-values, and diagnostics). Table S6. Multiple
regression model results assessing the influence of meteorological and hydrological variables on
WST at monthly scale. Table S7. Model including FAL evaporation (coefficients, p-values, and
diagnostics). Figure S1. Monthly water surface temperature time series (Yt), seasonal component (St),
trend component (Tt), and error component (et). Figure S2. Monthly solar radiation time series (Yt),
seasonal component (St), trend component (Tt), and error component (et). Figure S3. Monthly air
temperature time series (Yt), seasonal component (St), trend component (Tt), and error component
(et). Figure S4. Monthly relative humidity time series (Yt), seasonal component (St), trend component
(Tt), and error component (et). Figure S5. Monthly wind speed time series (Yt), seasonal component
(St), trend component (Tt), and error component (et). Records for 1991-2000 were excluded due to
data inconsistencies. Figure S6. Monthly precipitation time series (Yt), seasonal component (St),
trend component (Tt), and error component (et). Figure S7. Monthly evaporation on EB station time
series (Yt), seasonal component (St), trend component (Tt), and error component (et). Figure S8.
Monthly evaporation on FAL station time series (Yt), seasonal component (St), trend component (Tt),
and error component (et). Figure S9. Monthly inflow time series (Yt), seasonal component (St), trend
component (Tt), and error component (et). Figure S10. Simple correlations between WST and external
forcings (solar radiation, air temperature, relative humidity, precipitation, wind speed, evaporation,
and inflow) at a daily time scale. The matrix highlights the reduced explanatory power of individual
variables at this resolution. Figure S11. Correlation analysis between WST and external forcings
during the wet season. Wind speed and air temperature show the strongest associations, though
with lower R? values compared to the dry season. Figure S12. Correlation analysis between WST
and external forcings during the dry season. Air temperature and wind speed are the dominant
predictors of WST under dry and stable atmospheric conditions. Figure S13. Correlation analysis
between WST and external forcings at the annual scale. Air temperature and wind speed remain the
most influential drivers of long-term variability in WST. Figure S14. Simple correlation—Monthly:
precipitation vs. precipitation > 0.
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Abbreviations

The following abbreviations are used in this manuscript:

WWTP  Wastewater Treatment Plant

WTP Water Treatment Plant

WST Water Surface Temperature

FAL Fazenda Agua Limpa (location of an evaporation monitoring site)

EB Estagao da Biologia (location of an evaporation monitoring site)

INMET National Institute of Meteorology (Instituto Nacional de Meteorologia)

CAESB  Environmental Sanitation Company of Federal District (Companhia de Saneamento
Ambiental do Distrito Federal)

GEE Google Earth Engine

ANA Water National Agency (Agéncia Nacional de Aguas)

UnB University of Brasilia
SW Shortwave Radiation
LW Longwave Radiation
LH Latent Heat

H Sensible Heat

ENSO El Nifio-Southern Oscillation

ONI Oceanic Nino Index

PDO Pacific Decadal Oscillation

AMO Atlantic Multi-decadal Oscillation
SAMS  South American Monsoon System
SACZ South Atlantic Convergence Zone
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