Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/8805
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2011_VagnerRodriguesBessaParcial.pdf261,2 kBAdobe PDFVisualizar/Abrir
Título: Gênero para HNN-extensões de grupos finitos
Autor(es): Bessa, Vagner Rodrigues de
Orientador(es): Zalesski, Pavel
Assunto: Isomorfismo (Matemática)
Teoria dos grupos
Diferenças finitas
Data de publicação: 30-Jun-2011
Referência: BESSA, Vagner Rodrigues de. Gênero para HNN-extensões de grupos finitos. 2011. 71 f. Tese Parcial (Doutorado em Matemática)-Universidade de Brasília, Brasília, 2011.
Resumo: Neste trabalho encontramos uma limitação para a cardinalidade do gênero dos grupos G = HNN(K, A, t, f), com relação à família de todos os grupos virtualmente livres, onde K é um grupo finito. Também encontramos condições sobre G para que a cardinalidade do gênero seja igual a 1. Para o caso pro-p, encontramos efetivamente a cardinalidade do gênero quando consideramos G uma HNN-extensão residualmente-p. Por fim, fazemos o mesmo estudo para os grupos da forma G1 *H G2, onde G1 e G2 são grupos nilpotentes finitamente gerados e o subgrupo amalgamado H é finito. Toda esta tese tem como pilar o trabalho [GZ], de F. Grunewald e P. Zalesski. _______________________________________________________________________________ ABSTRACT
In this work, we find a bound for the cardinality of genus of groups G = HNN(K, A, t, f) with respect to the class of virtually free groups, where K is a finite group. We also find conditions on G for the cardinality of the genus to be equal 1. For the pro-p case we find effectively the cardinality of genus when we consider G to be residually-p HNN-extension. Finally, we do the same consideration for the groups of type G1 *H G2 where G1 and G2 are finitely generated nilpotent groups and the amalgamated subgroup H is finite. This work is inspired by the paper [GZ], of the F. Grunewald and P. Zalesskii.
Informações adicionais: Tese Parcial (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2011.
Aparece nas coleções:Teses, dissertações e produtos pós-doutorado

Mostrar registro completo do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.