Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/51468
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_Self-SimilarAbelianGroups.pdf302,53 kBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorDantas, Alex Carrazedo-
dc.contributor.authorSantos, Tulio Marcio Gentil dos-
dc.contributor.authorSidki, Said Najati-
dc.date.accessioned2025-02-05T12:55:01Z-
dc.date.available2025-02-05T12:55:01Z-
dc.date.issued2023-01-28-
dc.identifier.citationDANTAS, Alex C.; SANTOS, Tulio M. G.; SIDKI, Said N. Self-similar abelian groups and their centralizers. Groups Geometry, and Dynamics, [S. l.], v. 17, n. 2, p. 577–599, 2023. DOI: 10.4171/GGD/710. Disponível em: https://ems.press/journals/ggd/articles/9221800.pt_BR
dc.identifier.urihttp://repositorio.unb.br/handle/10482/51468-
dc.language.isoengpt_BR
dc.publisherEMS Presspt_BR
dc.rightsAcesso Abertopt_BR
dc.titleSelf-similar abelian groups and their centralizerspt_BR
dc.typeArtigopt_BR
dc.subject.keywordGrupos abelianospt_BR
dc.subject.keywordCentralizador de grupo abeliano autossimilarpt_BR
dc.rights.licenseThis work is licensed under a CC BY 4.0 licensept_BR
dc.identifier.doi10.4171/GGD/710pt_BR
dc.description.abstract1We extend results on transitive self-similar abelian subgroups of the group of automor-phisms Am of an m-ary tree Tm by Brunner and Sidki to the general case where the permutation group induced on the first level of the tree, has s ≥ 1 orbits. We prove that such a group A embeds in a self-similar abelian group A* which is also a maximal abelian subgroup of Am. The construction of A* is based on the definition of a free monoid Δ of rank s of partial diagonal monomorphisms of Am. Precisely, A*= Δ (B(A)), where B(A) denotes the product of the projections of A in its action on the different s orbits of maximal subtrees of Tm, and bar denotes the topological closure. Furthermore, we prove that if A is non-trivial, then A*=CAm (Δ(A)), the centralizer of Δ (A) in Am. When A is a torsion self-similar abelian group, it is shown that it is necessarily of finite exponent. Moreover, we extend recent constructions of self-similar free abelian groups of infinite enumerable rank to examples of such groups which are also Δ-invariant for s = 2. In the final section, we introduce for m = ns ≥ 2, a generalized adding machine a, an automorphism of Tm, and show that its centralizer in Am to be a split extension of (a)* by As . We also describe important Zn[As] submodules of (a)*.pt_BR
dc.contributor.affiliationUniversidade de Brasília, Departamento de Matemáticapt_BR
dc.contributor.affiliationInstituto Federal Goianopt_BR
dc.contributor.affiliationUniversidade de Brasília, Departamento de Matemáticapt_BR
dc.description.unidadeInstituto de Ciências Exatas (IE)pt_BR
dc.description.unidadeDepartamento de Matemática (IE MAT)pt_BR
dc.description.ppgPrograma de Pós-Graduação em Matemáticapt_BR
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.