Campo DC | Valor | Idioma |
dc.contributor.author | Dantas, Alex Carrazedo | - |
dc.contributor.author | Santos, Tulio Marcio Gentil dos | - |
dc.contributor.author | Sidki, Said Najati | - |
dc.date.accessioned | 2025-02-05T12:55:01Z | - |
dc.date.available | 2025-02-05T12:55:01Z | - |
dc.date.issued | 2023-01-28 | - |
dc.identifier.citation | DANTAS, Alex C.; SANTOS, Tulio M. G.; SIDKI, Said N. Self-similar abelian groups and their centralizers. Groups Geometry, and Dynamics, [S. l.], v. 17, n. 2, p. 577–599, 2023. DOI: 10.4171/GGD/710. Disponível em: https://ems.press/journals/ggd/articles/9221800. | pt_BR |
dc.identifier.uri | http://repositorio.unb.br/handle/10482/51468 | - |
dc.language.iso | eng | pt_BR |
dc.publisher | EMS Press | pt_BR |
dc.rights | Acesso Aberto | pt_BR |
dc.title | Self-similar abelian groups and their centralizers | pt_BR |
dc.type | Artigo | pt_BR |
dc.subject.keyword | Grupos abelianos | pt_BR |
dc.subject.keyword | Centralizador de grupo abeliano autossimilar | pt_BR |
dc.rights.license | This work is licensed under a CC BY 4.0 license | pt_BR |
dc.identifier.doi | 10.4171/GGD/710 | pt_BR |
dc.description.abstract1 | We extend results on transitive self-similar abelian subgroups of the group of automor-phisms Am of an m-ary tree Tm by Brunner and Sidki to the general case where the permutation group induced on the first level of the tree, has s ≥ 1 orbits. We prove that such a group A embeds in a self-similar abelian group A* which is also a maximal abelian subgroup of Am. The construction of A* is based on the definition of a free monoid Δ of rank s of partial diagonal monomorphisms of Am. Precisely, A*= Δ (B(A)), where B(A) denotes the product of the projections of A in its action on the different s orbits of maximal subtrees of Tm, and bar denotes the topological closure. Furthermore, we prove that if A is non-trivial, then A*=CAm (Δ(A)), the centralizer of Δ (A) in Am. When A is a torsion self-similar abelian group, it is shown that it is necessarily of finite exponent. Moreover, we extend recent constructions of self-similar free abelian groups of infinite enumerable rank to examples of such groups which are also Δ-invariant for s = 2. In the final section, we introduce for m = ns ≥ 2, a generalized adding machine a, an automorphism of Tm, and show that its centralizer in Am to be a split extension of (a)* by As . We also describe important Zn[As] submodules of (a)*. | pt_BR |
dc.contributor.affiliation | Universidade de Brasília, Departamento de Matemática | pt_BR |
dc.contributor.affiliation | Instituto Federal Goiano | pt_BR |
dc.contributor.affiliation | Universidade de Brasília, Departamento de Matemática | pt_BR |
dc.description.unidade | Instituto de Ciências Exatas (IE) | pt_BR |
dc.description.unidade | Departamento de Matemática (IE MAT) | pt_BR |
dc.description.ppg | Programa de Pós-Graduação em Matemática | pt_BR |
Aparece nas coleções: | Artigos publicados em periódicos e afins
|