Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/51453
Arquivos associados a este item:
Não existem arquivos associados a este item.
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorReis, Paulo Max Gil Innocencio-
dc.contributor.authorCosta, João Paulo Carvalho Lustosa da-
dc.contributor.authorMiranda, Ricardo Kehrle-
dc.contributor.authorDel Galdo, Giovanni-
dc.date.accessioned2025-02-04T11:19:38Z-
dc.date.available2025-02-04T11:19:38Z-
dc.date.issued2017-
dc.identifier.citationREIS, Paulo Max Gil Innocencio et al. ESPRIT-Hilbert-based audio tampering detection with SVM classifier for forensic analysis via electrical network frequency. IEEE Transactions on Information Forensics and Security, [S. l.], v. 12, n. 4, p. 853-864, apr. 2017. DOI: 10.1109/TIFS.2016.2636095.pt_BR
dc.identifier.urihttp://repositorio.unb.br/handle/10482/51453-
dc.language.isoengpt_BR
dc.publisherIEEEpt_BR
dc.rightsAcesso Restritopt_BR
dc.titleESPRIT-Hilbert-based audio tampering detection with SVM classifier for forensic analysis via electrical network frequencypt_BR
dc.typeArtigopt_BR
dc.subject.keywordProcessamento de sinais acústicospt_BR
dc.subject.keywordGravações de áudiopt_BR
dc.subject.keywordAnálise forensept_BR
dc.subject.keywordÁudio - adulteraçãopt_BR
dc.subject.keywordFrequência da rede elétricapt_BR
dc.identifier.doi10.1109/TIFS.2016.2636095pt_BR
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/7775065pt_BR
dc.description.abstract1Audio authentication is a critical task in multimedia forensics demanding robust methods to detect and identify tampered audio recordings. In this paper, a new technique to detect adulterations in audio recordings is proposed by exploiting abnormal variations in the electrical network frequency (ENF) signal eventually embedded in a questioned audio recording. These abnormal variations are caused by abrupt phase discontinuities due to insertions and suppressions of audio snippets during the tampering task. First, we propose an ESPRIT-Hilbert ENF estimator in conjunction with an outlier detector based on the sample kurtosis of the estimated ENF. Next, we use the computed kurtosis as an input for a support vector machine classifier to indicate the presence of tampering. The proposed scheme, herein designated as SPHINS, significantly outperforms related previous tampering detection approaches in the conducted tests. We validate our results using the Carioca 1 corpus with 100 unedited authorized audio recordings of phone calls.pt_BR
dc.contributor.affiliationUniversity of Brasília, Department of Electrical Engineeringpt_BR
dc.contributor.affiliationNational Institute of Criminalistics, Forensic Examination Service of Electronic and Multimedia Evidences, Brasília, DF, Brazilpt_BR
dc.contributor.affiliationUniversity of Brasília, Department of Electrical Engineeringpt_BR
dc.contributor.affiliationFraunhofer Institute for Integrated Circuits IIS, Erlangen, Germanypt_BR
dc.contributor.affiliationlmenau University of Technology, Institute for Information Technology, Ilmenau, Germanypt_BR
dc.contributor.affiliationUniversity of Brasília, Department of Electrical Engineeringpt_BR
dc.contributor.affiliationlmenau University of Technology, Institute for Information Technology, Ilmenau, Germanypt_BR
dc.contributor.affiliationFraunhofer Institute for Integrated Circuits IIS, Erlangen, Germanypt_BR
dc.contributor.affiliationlmenau University of Technology, Institute for Information Technology, Ilmenau, Germanypt_BR
dc.description.unidadeFaculdade de Tecnologia (FT)pt_BR
dc.description.unidadeDepartamento de Engenharia Elétrica (FT ENE)pt_BR
dc.description.ppgPrograma de Pós-Graduação em Engenharia Elétricapt_BR
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.