Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/47959
Arquivos associados a este item:
Arquivo TamanhoFormato 
FelipeBarretoDeOliveira_DISSERT.pdf4,41 MBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorNze, Georges Daniel Amvamept_BR
dc.contributor.authorOliveira, Felipe Barreto dept_BR
dc.date.accessioned2024-02-28T21:21:47Z-
dc.date.available2024-02-28T21:21:47Z-
dc.date.issued2024-02-28-
dc.date.submitted2023-06-16-
dc.identifier.citationOLIVEIRA, Felipe Barreto de. Framework para detecção de ataques DoS em dispositivos IoT, utilizando abordagens de aprendizado de máquinas. 2023. xi, 67 f., il. Dissertação (Mestrado Profissional em Engenharia Elétrica) — Universidade de Brasília, Brasília, 2023.pt_BR
dc.identifier.urihttp://repositorio2.unb.br/jspui/handle/10482/47959-
dc.descriptionDissertação (mestrado) — Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, Programa de Pós-Graduação em Engenharia Elétrica, 2023.pt_BR
dc.description.abstractA Internet das Coisas (IoT) é um dos paradigmas mais importantes dos últimos anos, pois a sua principal característica é a possibilidade de fundir o mundo real com o mundo virtual, utilizando o conceito das “coisas”. Por um lado, apresenta uma grande comodidade no nosso cotidiano, revolucionando a comunicação entre pessoas e objetos. Por outro lado, as vulnerabilidades apresentadas e os ataques que têm ocorrido indicam que esta tecnologia continua a ser uma expectativa para o futuro em diversa empresas, submergindo, assim, os benefícios que nos poderia proporcionar. Neste trabalho, propomos um framework composto de um sistema de detecção de intrusão em tempo real para dispositivos IoT, onde os ataques DoS serão detectados, identificados e classificados, seguindo a literatura atual. Para isso, é utilizado técnicas de aprendizado de máquinas para identificar ataques, através de anomalias ocorridas no monitoramento de dispositivos IoT na suíte ELK com o plugin Wazuh. O primeiro resultado experimental com o dataset NSL-KDD mostra a eficiência da nossa proposta, com 91,90% de acurácia, 0,9217 de precisão, 0,9190 de recall e 0,9168 de F1-score. O segundo resultado experimental com o ataque DoS de syn flood em tempo real, criado pelo metasploit, mostra uma acurácia de 99,89%, uma precisão de 1,0000, um recall de 0,9953 e um F1-score de 0,9977.pt_BR
dc.language.isoporpt_BR
dc.rightsAcesso Abertopt_BR
dc.titleFramework para detecção de ataques DoS em dispositivos IoT, utilizando abordagens de aprendizado de máquinaspt_BR
dc.typeDissertaçãopt_BR
dc.subject.keywordInternet das Coisas (IoT)pt_BR
dc.subject.keywordAprendizado de máquinapt_BR
dc.subject.keywordDetecção de intrusãopt_BR
dc.subject.keywordAtaques cibernéticos - detecçãopt_BR
dc.rights.licenseA concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.unb.br, www.ibict.br, www.ndltd.org sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra supracitada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.pt_BR
dc.description.abstract1The Internet of Things is one of the most important paradigms of the last years, because its main characteristic is the possibility of merging the real world with the virtual world, using the concept of “things”. On the one hand, it presents a great convenience in our daily lives, revolutionizing the communication between people and objects. On the other hand, the vulnerabilities presented and the attacks that have occurred indicate that this technology remains an expectation for the future, thus submerging the benefits it could provide us. In this paper, we propose a framework for real time intrusion detection system in IoT devices, where the DoS attacks will be detected, identified, and classified, following the present literature. For this purpose, machine learning is used to identify attacks through anomalies that occurred in monitoring IoT devices on the ELK suite with the Wazuh plugin. The first experimental result with the NSL-KDD dataset show our proposal’s efficiency, with 91.90% accuracy, 0.9217 precision, 0.9190 recall, and 0.9168 F1-score. The second experimental result with real time syn flood attack, created by metasploit, show accuracy of 99,89%, precision of 1.0000, recall of 0.9953, F1-Score of 0.9977.pt_BR
dc.description.unidadeFaculdade de Tecnologia (FT)pt_BR
dc.description.unidadeDepartamento de Engenharia Elétrica (FT ENE)pt_BR
dc.description.ppgPrograma de Pós-Graduação em Engenharia Elétrica, Mestrado Profissionalpt_BR
Aparece nas coleções:Teses, dissertações e produtos pós-doutorado

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.