Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/46884
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_ChargeTransportCove.pdf3,55 MBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorCassiano, Tiago de Sousa Araújo-
dc.contributor.authorSousa, Leonardo Evaristo de-
dc.contributor.authorRibeiro Júnior, Luiz Antônio-
dc.contributor.authorSilva, Geraldo Magela e-
dc.contributor.authorOliveira Neto, Pedro Henrique de-
dc.date.accessioned2023-11-21T15:39:43Z-
dc.date.available2023-11-21T15:39:43Z-
dc.date.issued2022-03-17-
dc.identifier.citationCASSIANO, Tiago de Sousa Araújo et al. Charge transport in cove-type graphene nanoribbons: the role of quasiparticles. Synthetic Metals, v. 287, 117056, jul. 2022. DOI: https://doi.org/10.1016/j.synthmet.2022.117056. Disponível em: https://www.sciencedirect.com/science/article/pii/S0379677922000509?via%3Dihub. Acesso em: 21 nov. 2023.pt_BR
dc.identifier.urihttp://repositorio2.unb.br/jspui/handle/10482/46884-
dc.language.isoengpt_BR
dc.publisherElsevier B.V.pt_BR
dc.rightsAcesso Abertopt_BR
dc.titleCharge transport in cove-type graphene nanoribbons : the role of quasiparticlespt_BR
dc.typeArtigopt_BR
dc.subject.keywordGrafenopt_BR
dc.subject.keywordSSHpt_BR
dc.subject.keywordPolaronpt_BR
dc.subject.keywordBipolaronpt_BR
dc.subject.keywordTransporte de cargapt_BR
dc.subject.keywordNanofitas de grafenopt_BR
dc.rights.licenseThis is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).pt_BR
dc.identifier.doihttps://doi.org/10.1016/j.synthmet.2022.117056pt_BR
dc.description.abstract1Previous reports indicate that cove-type graphene nanoribbons (CGNR) may present high intrinsic charge mobility of almost 15,000 cm2/Vs. Still, with experimental estimates varying from 150 to 15,000 cm2/Vs. Typically, theoretical mobilities are obtained from methods such as the Drude-Smith model, which tends to neglect the electron-phonon coupling mechanism, or the Boltzmann transport equation, that considers only acoustic phonons. As such, more thorough approaches are needed. In this work, we simulated charge transport in 4-CGNR by explicitly contemplating the lattice collective behavior. The nanoribbon is simulated by a two-dimensional Su-Schrieffer-Heeger (SSH) tight-binding model with electron-phonon coupling and considering all phonon modes. Results show the rise of two quasiparticles: polaron and bipolaron. We probed their dynamical properties by including the presence of an external electric field. Findings indicate that each carrier has a characteristic transport regime that is deeply related to phonon collision interactions. Model derived mobilities for polarons and bipolarons reach up to 18,000 cm2/Vs and 1500 cm2/Vs, respectively. Furthermore, calculations reveal the carriers to be highly efficient charge transporters, with a field independent low effective mass and notable mobility, delivering a better performance than other narrow GNRs. All presented features place the CGNR as a potential base material of future high-quality organic-based optoelectronic devices. The work also contributes to the theoretical understanding of transport physics in highly confined materials.pt_BR
dc.contributor.affiliationUniversity of Brasilia, Institute of Physicspt_BR
dc.contributor.affiliationTechnical University of Denmark, Department of Energy Conversion and Storagept_BR
dc.contributor.affiliationUniversity of Brasilia, Institute of Physicspt_BR
dc.contributor.affiliationUniversity of Brasilia, Institute of Physicspt_BR
dc.contributor.affiliationUniversity of Brasilia, Institute of Physicspt_BR
dc.description.unidadeInstituto de Física (IF)pt_BR
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.