Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/46642
Arquivos associados a este item:
Não existem arquivos associados a este item.
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorBoccardo, Lucio-
dc.contributor.authorMaia, Liliane de Almeida-
dc.contributor.authorPellacci, Benedetta-
dc.date.accessioned2023-10-09T16:18:29Z-
dc.date.available2023-10-09T16:18:29Z-
dc.date.issued2021-09-28-
dc.identifier.citationBOCCARDO, Lucio; MAIA, Liliane; PELLACCI, Benedetta. Asymptotic behaviour of positive solutions of semilinear elliptic problems with increasing powers. Proceedings of the Royal Society of Edinburgh, v. 152, n. 5. 2021. DOI https://doi.org/10.1017/prm.2021.54. Disponível em: https://www.cambridge.org/core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics/article/abs/asymptotic-behaviour-of-positive-solutions-of-semilinear-elliptic-problems-with-increasing-powers/CEBF477D0A8AEE329C646549420DFEAD. Acesso em: 09 out. 2023.pt_BR
dc.identifier.urihttp://repositorio2.unb.br/jspui/handle/10482/46642-
dc.description.sponsorshipUnB - Edital DPI/DPG n. 02/2022-
dc.language.isoengpt_BR
dc.publisherCambridge University Presspt_BR
dc.rightsAcesso Abertopt_BR
dc.titleAsymptotic behaviour of positive solutions of semilinear elliptic problems with increasing powerspt_BR
dc.typeArtigopt_BR
dc.subject.keywordSoluções positivaspt_BR
dc.subject.keywordEquações semilinearespt_BR
dc.identifier.doihttps://doi.org/10.1017/prm.2021.54pt_BR
dc.relation.publisherversionhttps://www.cambridge.org/core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics/article/abs/asymptotic-behaviour-of-positive-solutions-of-semilinear-elliptic-problems-with-increasing-powers/CEBF477D0A8AEE329C646549420DFEADpt_BR
dc.description.abstract1We prove existence results of two solutions of the problem L(u) + um−1 = λup−1 in Ω, u > 0 in Ω, u = 0 on ∂Ω, where L(v) = −div(M(x)∇v) is a linear operator, p ∈ (2, 2∗] and λ and m sufficiently large. Then their asymptotical limit as m → +∞ is investigated showing different behaviours.pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-6163-1899pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-1254-1811pt_BR
dc.contributor.emailmailto:boccardo@uniroma1.itpt_BR
dc.contributor.emailmailto:lilimaia@unb.brpt_BR
dc.contributor.emailmailto:benedetta.pellacci@unicampania.itpt_BR
dc.contributor.affiliationIstituto Lombardo and Sapienza Università di Romapt_BR
dc.contributor.affiliationDepartamento de Matemática, Universidade de Brasíliapt_BR
dc.contributor.affiliationDipartimento di Matematica e Fisica, Università della Campania ‘Luigi Vanvitelli’pt_BR
dc.description.unidadeInstituto de Ciências Exatas (IE)pt_BR
dc.description.unidadeDepartamento de Matemática (IE MAT)pt_BR
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.