http://repositorio.unb.br/handle/10482/46642
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Boccardo, Lucio | - |
dc.contributor.author | Maia, Liliane de Almeida | - |
dc.contributor.author | Pellacci, Benedetta | - |
dc.date.accessioned | 2023-10-09T16:18:29Z | - |
dc.date.available | 2023-10-09T16:18:29Z | - |
dc.date.issued | 2021-09-28 | - |
dc.identifier.citation | BOCCARDO, Lucio; MAIA, Liliane; PELLACCI, Benedetta. Asymptotic behaviour of positive solutions of semilinear elliptic problems with increasing powers. Proceedings of the Royal Society of Edinburgh, v. 152, n. 5. 2021. DOI https://doi.org/10.1017/prm.2021.54. Disponível em: https://www.cambridge.org/core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics/article/abs/asymptotic-behaviour-of-positive-solutions-of-semilinear-elliptic-problems-with-increasing-powers/CEBF477D0A8AEE329C646549420DFEAD. Acesso em: 09 out. 2023. | pt_BR |
dc.identifier.uri | http://repositorio2.unb.br/jspui/handle/10482/46642 | - |
dc.description.sponsorship | UnB - Edital DPI/DPG n. 02/2022 | - |
dc.language.iso | eng | pt_BR |
dc.publisher | Cambridge University Press | pt_BR |
dc.rights | Acesso Aberto | pt_BR |
dc.title | Asymptotic behaviour of positive solutions of semilinear elliptic problems with increasing powers | pt_BR |
dc.type | Artigo | pt_BR |
dc.subject.keyword | Soluções positivas | pt_BR |
dc.subject.keyword | Equações semilineares | pt_BR |
dc.identifier.doi | https://doi.org/10.1017/prm.2021.54 | pt_BR |
dc.relation.publisherversion | https://www.cambridge.org/core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics/article/abs/asymptotic-behaviour-of-positive-solutions-of-semilinear-elliptic-problems-with-increasing-powers/CEBF477D0A8AEE329C646549420DFEAD | pt_BR |
dc.description.abstract1 | We prove existence results of two solutions of the problem L(u) + um−1 = λup−1 in Ω, u > 0 in Ω, u = 0 on ∂Ω, where L(v) = −div(M(x)∇v) is a linear operator, p ∈ (2, 2∗] and λ and m sufficiently large. Then their asymptotical limit as m → +∞ is investigated showing different behaviours. | pt_BR |
dc.identifier.orcid | https://orcid.org/0000-0002-6163-1899 | pt_BR |
dc.identifier.orcid | https://orcid.org/0000-0002-1254-1811 | pt_BR |
dc.contributor.email | mailto:boccardo@uniroma1.it | pt_BR |
dc.contributor.email | mailto:lilimaia@unb.br | pt_BR |
dc.contributor.email | mailto:benedetta.pellacci@unicampania.it | pt_BR |
dc.contributor.affiliation | Istituto Lombardo and Sapienza Università di Roma | pt_BR |
dc.contributor.affiliation | Departamento de Matemática, Universidade de Brasília | pt_BR |
dc.contributor.affiliation | Dipartimento di Matematica e Fisica, Università della Campania ‘Luigi Vanvitelli’ | pt_BR |
dc.description.unidade | Instituto de Ciências Exatas (IE) | pt_BR |
dc.description.unidade | Departamento de Matemática (IE MAT) | pt_BR |
Aparece nas coleções: | Artigos publicados em periódicos e afins |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.