Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/46526
Arquivos associados a este item:
Não existem arquivos associados a este item.
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorCarvalho, Osmar Luiz Ferreira de-
dc.contributor.authorCarvalho Júnior, Osmar Abílio de-
dc.contributor.authorAlbuquerque, Anesmar Olino de-
dc.contributor.authorSantana, Níckolas Castro-
dc.contributor.authorBorges, Díbio Leandro-
dc.date.accessioned2023-09-21T12:15:56Z-
dc.date.available2023-09-21T12:15:56Z-
dc.date.issued2022-05-03-
dc.identifier.citationCARVALHO, Osmar L. F. de Carvalho et al. Rethinking panoptic segmentation in remote sensing: a hybrid approach using semantic segmentation and non-learning methods. IEEE Geoscience and Remote Sensing Letters, [S.l.], v. 19, art. n. 3512105, p. 1-5, 2022, DOI: 10.1109/LGRS.2022.3172207. Disponível em: https://ieeexplore.ieee.org/document/9766343.pt_BR
dc.identifier.urihttp://repositorio2.unb.br/jspui/handle/10482/46526-
dc.language.isoengpt_BR
dc.publisherIEEEpt_BR
dc.rightsAcesso Restritopt_BR
dc.titleRethinking panoptic segmentation in remote sensing : a hybrid approach using semantic segmentation and non-learning methodspt_BR
dc.typeArtigopt_BR
dc.subject.keywordSensoriamento remotopt_BR
dc.subject.keywordSegmentação semânticapt_BR
dc.subject.keywordAprendizagem profundapt_BR
dc.subject.keywordSegmentação de imagenspt_BR
dc.subject.keywordSegmentação panóticapt_BR
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/9766343pt_BR
dc.description.abstract1This letter proposes a novel method to obtain panoptic predictions by extending the semantic segmentation task with a few non-learning image processing steps, presenting the following benefits: 1) annotations do not require a specific format [e.g., common objects in context (COCO)]; 2) fewer parameters (e.g., single loss function and no need for object detection parameters); and 3) a more straightforward sliding windows implementation for large image classification (still unexplored for panoptic segmentation). Semantic segmentation models do not individualize touching objects, as their predictions can merge; i.e., a single polygon represents many targets. Our method overcomes this problem by isolating the objects using borders on the polygons that may merge. The data preparation requires generating a one-pixel border, and for unique object identification, we create a list with the isolated polygons, attribute a different value to each one, and use the expanding border (EB) algorithm for those with borders. Although any semantic segmentation model applies, we used the U-Net with three backbones (EfficientNet-B5, EfficientNet-B3, and EfficientNet-B0). The results show that the following hold: 1) the EfficientNet-B5 had the best results with 70% mean intersection over union (mIoU); 2) the EB algorithm presented better results for better models; 3) the panoptic metrics show a high capability of identifying things and stuff with 65 panoptic quality (PQ); and 4) the sliding windows on a 2560×2560 -pixel area has shown promising results, in which the ratio of merged objects by correct predictions was lower than 1% for all classes.pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-5619-8525pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-0346-1684pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0003-1561-7583pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0001-6133-6753pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-4868-0629pt_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Computer Sciencept_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Geographypt_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Geographypt_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Geographypt_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Computer Sciencept_BR
dc.description.unidadeInstituto de Ciências Exatas (IE)pt_BR
dc.description.unidadeDepartamento de Ciência da Computação (IE CIC)pt_BR
dc.description.unidadeInstituto de Ciências Humanas (ICH)pt_BR
dc.description.unidadeDepartamento de Geografia (ICH GEA)pt_BR
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.