http://repositorio.unb.br/handle/10482/46526
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Carvalho, Osmar Luiz Ferreira de | - |
dc.contributor.author | Carvalho Júnior, Osmar Abílio de | - |
dc.contributor.author | Albuquerque, Anesmar Olino de | - |
dc.contributor.author | Santana, Níckolas Castro | - |
dc.contributor.author | Borges, Díbio Leandro | - |
dc.date.accessioned | 2023-09-21T12:15:56Z | - |
dc.date.available | 2023-09-21T12:15:56Z | - |
dc.date.issued | 2022-05-03 | - |
dc.identifier.citation | CARVALHO, Osmar L. F. de Carvalho et al. Rethinking panoptic segmentation in remote sensing: a hybrid approach using semantic segmentation and non-learning methods. IEEE Geoscience and Remote Sensing Letters, [S.l.], v. 19, art. n. 3512105, p. 1-5, 2022, DOI: 10.1109/LGRS.2022.3172207. Disponível em: https://ieeexplore.ieee.org/document/9766343. | pt_BR |
dc.identifier.uri | http://repositorio2.unb.br/jspui/handle/10482/46526 | - |
dc.language.iso | eng | pt_BR |
dc.publisher | IEEE | pt_BR |
dc.rights | Acesso Restrito | pt_BR |
dc.title | Rethinking panoptic segmentation in remote sensing : a hybrid approach using semantic segmentation and non-learning methods | pt_BR |
dc.type | Artigo | pt_BR |
dc.subject.keyword | Sensoriamento remoto | pt_BR |
dc.subject.keyword | Segmentação semântica | pt_BR |
dc.subject.keyword | Aprendizagem profunda | pt_BR |
dc.subject.keyword | Segmentação de imagens | pt_BR |
dc.subject.keyword | Segmentação panótica | pt_BR |
dc.relation.publisherversion | https://ieeexplore.ieee.org/document/9766343 | pt_BR |
dc.description.abstract1 | This letter proposes a novel method to obtain panoptic predictions by extending the semantic segmentation task with a few non-learning image processing steps, presenting the following benefits: 1) annotations do not require a specific format [e.g., common objects in context (COCO)]; 2) fewer parameters (e.g., single loss function and no need for object detection parameters); and 3) a more straightforward sliding windows implementation for large image classification (still unexplored for panoptic segmentation). Semantic segmentation models do not individualize touching objects, as their predictions can merge; i.e., a single polygon represents many targets. Our method overcomes this problem by isolating the objects using borders on the polygons that may merge. The data preparation requires generating a one-pixel border, and for unique object identification, we create a list with the isolated polygons, attribute a different value to each one, and use the expanding border (EB) algorithm for those with borders. Although any semantic segmentation model applies, we used the U-Net with three backbones (EfficientNet-B5, EfficientNet-B3, and EfficientNet-B0). The results show that the following hold: 1) the EfficientNet-B5 had the best results with 70% mean intersection over union (mIoU); 2) the EB algorithm presented better results for better models; 3) the panoptic metrics show a high capability of identifying things and stuff with 65 panoptic quality (PQ); and 4) the sliding windows on a 2560×2560 -pixel area has shown promising results, in which the ratio of merged objects by correct predictions was lower than 1% for all classes. | pt_BR |
dc.identifier.orcid | https://orcid.org/0000-0002-5619-8525 | pt_BR |
dc.identifier.orcid | https://orcid.org/0000-0002-0346-1684 | pt_BR |
dc.identifier.orcid | https://orcid.org/0000-0003-1561-7583 | pt_BR |
dc.identifier.orcid | https://orcid.org/0000-0001-6133-6753 | pt_BR |
dc.identifier.orcid | https://orcid.org/0000-0002-4868-0629 | pt_BR |
dc.contributor.affiliation | University of Brasilia, Department of Computer Science | pt_BR |
dc.contributor.affiliation | University of Brasilia, Department of Geography | pt_BR |
dc.contributor.affiliation | University of Brasilia, Department of Geography | pt_BR |
dc.contributor.affiliation | University of Brasilia, Department of Geography | pt_BR |
dc.contributor.affiliation | University of Brasilia, Department of Computer Science | pt_BR |
dc.description.unidade | Instituto de Ciências Exatas (IE) | pt_BR |
dc.description.unidade | Departamento de Ciência da Computação (IE CIC) | pt_BR |
dc.description.unidade | Instituto de Ciências Humanas (ICH) | pt_BR |
dc.description.unidade | Departamento de Geografia (ICH GEA) | pt_BR |
Aparece nas coleções: | Artigos publicados em periódicos e afins |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.