Campo DC | Valor | Idioma |
dc.contributor.advisor | Gondim, Paulo Roberto de Lira | - |
dc.contributor.author | Peña Llerena, Yarisley | - |
dc.date.accessioned | 2023-08-16T23:41:50Z | - |
dc.date.available | 2023-08-16T23:41:50Z | - |
dc.date.issued | 2023-08-16 | - |
dc.date.submitted | 2022-12-20 | - |
dc.identifier.citation | PEÑA LLERENA, Yarisley. Controller placement and radio resource allocation for D2D communications in 5G Wireless networks. 2022. [178] f., il. Tese (Doutorado em Engenharia Elétrica) — Universidade de Brasília, Brasília, 2022. | pt_BR |
dc.identifier.uri | http://repositorio2.unb.br/jspui/handle/10482/46341 | - |
dc.description | Tese (doutorado) — Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2022. | pt_BR |
dc.description.abstract | As redes celulares de próxima geração prometem uma transmissão de dados mais rápida,
maior largura de banda e menor latência, e a tecnologia de comunicação Dispositivo-a-Dispositivo
(D2D, do inglês Device-to-Device), devido aos serviços baseados em proximidade (ProSe, do
inglês Proximity Services) dos dispositivos de comunicação, ajuda a tornar tais promessas uma
realidade. As vantagens de tal comunicação incluem maior vazão, maior taxa de transmissão de
dados, menor latência, menor consumo de energia, equidade e maior eficiência espectral.
Este trabalho possui foco na gestão das comunicações D2D em uma rede de comunicação
móvel celular, sendo tratados dois problemas: o problema de localização de controladores (CPP,
do inglês Controller Placement Problem) e o problema de alocação de recursos de rádio (RRA,
do inglês Radio Resource Allocation).
A técnica proposta para resolver o problema CPP envolve, primeiramente, a obtenção do
número de comunicações D2D a serem gerenciadas e depois o número de controladores necessários,
a sua localização física na infra-estrutura celular e a melhor atribuição de eNB (do inglês evolved
NodeB) aos controladores. O problema foi modelado como um problema de optimização e as
meta-heurísticas Colônia de Abelhas Artificiais (ABC, do inglês Artificial Bee Colony) e Sistema
de Colônia de Formigas com Memória Externa (ACS-EM, do inglês Ant Colony System with External Memory) foram utilizadas para resolvê-lo. As duas meta-heurísticas foram comparadas
com as meta-heurísticas Sistema de Colônia de Formigas (ACS, do inglês Ant Colony System) e
Optimização do Enxame de Partículas (PSO, do inglês Particle Swarm Optimization). A análise
revelou que as complexidades computacionais do ABC e do PSO são inferiores às do ACS-EM
e do ACS. No entanto, ABC e ACS-EM demonstraram um melhor desempenho na resolução do
problema, com características que permitem uma exploração mais eficiente do espaço de busca,
evitando assim soluções sub-ótimas. Os melhores resultados foram obtidos com o ABC, seguido
pelo ACS-EM, depois pelo ACS e, por último, pelo PSO.
Com o fim de obter o número de comunicações D2D admitidas na rede, dois métodos foram
propostos para a solução do problema RRA. No primeiro, o problema de optimização é resolvido
pela meta-heurística Social-Aware RRA Artificial Bee Colony (SA-RRA-ABC), considerando a
relação social entre os usuários, um esquema de feedback, e a maximização do throughput do
sistema. Um esquema de feedback, chamado selected-NM Maximum Distance Ratio (MDR) q-bit
feedback, foi proposto para reduzir a sobrecarga de sinalização (overhead). Cada receptor D2D
envia à eNB apenas q-bits de informação do estado do canal de N dispositivos celulares (CUE, do
inglês Cellular User Equipment) e de M pares D2D, utilizando na seleção o maior valor da métrica
MDR. A meta-heurística SA-RRA-ABC foi validada através de simulações e comparada com os
algoritmos gulosos GRAA (do inglês Greedy Resource Allocation Algorithm) e SA-GRAA (do
inglês Social-aware Greedy Resource Allocation Algorithm). Os resultados mostraram que a
meta-heurística SA-RRA-ABC apresenta melhor desempenho que os algoritmos gulosos. Foi
também mostrado que o modelo de feedback proposto pode alcançar desempenho próximo do
modelo full CSI - Channel State Information (onde a eNB tem informação do estado de todos os
canais), com uma sobrecarga de sinalização (overhead) inferior.
O segundo método de solução do problema RRA considera o problema de optimização em
uma rede celular D2D que oferece serviços URLLC (do inglês Ultra-reliable and Low Latency
Communications), para o envio de pacotes curtos diretamente entre usuários, utilizando comunicações D2D, maximizando assim a eficiência energética da rede. O problema é resolvido por três
meta-heurísticas bio-inspiradas (ABC, ACS-EM e PSO), levando em consideração a interferência quando os usuários de celulares e dispositivos D2D utilizam um mesmo recurso de rádio. As
meta-heurísticas foram comparadas com uma heurística gulosa e um algoritmo de busca exaustiva. A análise revelou que a complexidade computacional da heurística gulosa é a mais baixa
e que as complexidades do ABC e do PSO são mais baixas que as do ACS-EM. Porém, o ABC
mostrou um melhor desempenho na resolução do problema, seguido pelo ACS-EM, depois pelo
PSO e, por último, pela heurística gulosa. | pt_BR |
dc.language.iso | eng | pt_BR |
dc.rights | Acesso Aberto | pt_BR |
dc.title | Controller placement and radio resource allocation for D2D communications in 5G Wireless networks | pt_BR |
dc.type | Tese | pt_BR |
dc.subject.keyword | Comunicação device-to-device | pt_BR |
dc.subject.keyword | Redes celulares | pt_BR |
dc.subject.keyword | 5G | pt_BR |
dc.description.abstract1 | Next generation cellular networks promise faster data transmission, higher bandwidth, and
lower latency and the Device-to-Device (D2D) communication technology helps make such promises
a reality, due to Proximity Services (ProSe) of communication devices. The advantages of such
communication include higher throughput, enhanced data rate, lower latency and energy consumption, fairness, and improved spectral efficiency.
This research focuses on the management of D2D communications on a cellular network. Two
problems, namely Controller Placement Problem (CPP) and Radio Resource Allocation (RRA)
were studied.
The technique proposed for solving the former involves the obtaining of number of D2D communications to be managed and then number of controllers required, their physical location in
the cellular infrastructure, and the best evolved NodeB (eNB) assignment for them. The problem
was modeled as an optimization problem one and Artificial Bee Colony (ABC) and Ant Colony
System with External Memory (ACS-EM) meta-heuristics solved it. They were compared with
Ant Colony System (ACS) and Particle Swarm Optimization (PSO) algorithms, and the analysis
revealed the computational complexities of ABC and PSO are lower than of ACS-EM and ACS.
However, ABC and ACS-EM showed better performance in solving the problem, with characteristics that enable a more efficient exploration of the search space, thus avoiding sub-optimal
solutions. The best results were obtained with ABC, followed by ACS-EM, then ACS, and lastly
PSO.
Regarding the RRA problem, two solution methods were proposed towards obtaining the
number of D2D connections admitted in the network. In the first RRA solution method, the optimization problem is solved by the Social-aware RRA Artificial Bee Colony (SA-RRA-ABC),
considering the social relationship between users, a feedback scheme, and maximization of the
system throughput. A selected-NM Maximum Distance Ratio (MDR) q-bit feedback scheme
designed reduces feedback overhead, since each D2D receiver sends only q-bit feedback Channel State Information (CSI) among N Cellular User Equipment (CUE) and M D2D pairs with
the largest MDR metric. SA-RRA-ABC was validated through simulations and compared with
Greedy Resource Allocation Algorithm (GRAA) and Social-aware Greedy Resource Allocation
Algorithm (SA-GRAA). The simulation results showed its better performance. The selected-NM
q-feedback model proposed can achieve performance close to that of the full CSI model with
lower overhead.
The second RRA solution method deals with the optimization problem in a D2D cellular
network that offers Ultra-reliable and Low Latency Communications (URLLC) services for the
sending short packets directly to their destination, thus maximizing the network energy efficiency.
The problem is solved by three bioinspired algorithms, namely ABC, ACS-EM, and PSO, which
take into account interference when cellular and D2D users use a same radio resource. The meta-
heuristics were compared with a greedy heuristic and an exhaustive search algorithm and the
analysis revealed the computational complexity of Greedy is the lowest and those of ABC and
PSO are lower than that of ACS-EM. However, ABC showed better performance in solving the
problem, followed by ACS-EM, then PSO, and lastly Greedy heuristic. | pt_BR |
dc.contributor.email | yarisleyllerena@gmail.com | pt_BR |
dc.description.unidade | Faculdade de Tecnologia (FT) | pt_BR |
dc.description.unidade | Departamento de Engenharia Elétrica (FT ENE) | pt_BR |
dc.description.ppg | Programa de Pós-Graduação em Engenharia Elétrica | - |
Aparece nas coleções: | Teses, dissertações e produtos pós-doutorado
|