Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/45988
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2022_LorenadeSouzaBezerraBorges.pdf9,24 MBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorSousa Júnior, Rafael Timóteo de-
dc.contributor.authorBorges, Lorena de Souza Bezerra-
dc.date.accessioned2023-06-26T23:14:58Z-
dc.date.available2023-06-26T23:14:58Z-
dc.date.issued2023-06-26-
dc.date.submitted2022-12-13-
dc.identifier.citationBORGES, Lorena de Souza Bezerra. Solução para detecção de tunelamento DNS em ambiente de nuvem computacional. 2022. xi, 85 f., il. Dissertação (Mestrado em Engenharia Elétrica) — Universidade de Brasília, Brasília, 2022.pt_BR
dc.identifier.urihttp://repositorio2.unb.br/jspui/handle/10482/45988-
dc.descriptionDissertação (mestrado) — Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2022.pt_BR
dc.description.abstractO tunelamento DNS usa recursos do protocolo DNS para estabelecer canais de comando e controle (C2), podendo ser utilizado como uma ferramenta maliciosa para exfiltração de dados. Atualmente, as ameaças cibernéticas usando túneis DNS afetam sistemas multiplataforma, explorando recursos computacionais locais e em nuvem. Muitos estudos de detecção de tunelamento DNS combinam técnicas de extração de parâmetros e algoritmos de machine learning (ML), alcançando elevados níveis de acurácia. Entretanto, treinar modelos de ML em larga escala e em tempo real, continua sendo um desafio operacional e de alto custo computacional para muitas instituições. Este estudo propõe uma metodologia para detecção de tunelamento DNS, através de coletas de recursos híbridos, utilizando algoritmos não-supervisionados para identificação de anomalias. A validação utiliza tráfego e consultas DNS coletados à partir da plataforma em nuvem AWS para construção de um dataset. Foram feitas análises para situações práticas de C2, exfiltração e infiltração de dados, testes de verificação de túneis, além de transferências de dados leves e reduzido número de requisições DNS. Os resultados para as detecções de anomalias foram efetivos para ferramentas de tunelamento DNS como Iodine, Dnscat2, DNSExfiltrator, DNSStager e o utilitário Flightsim. O modelo proposto tem uma abordagem operacional e modular, com a possibilidade de adaptação para diversas plataformas de computação em nuvem, integrando registros de recursos locais (on-premise), para assim, compor sistemas de controles de segurança nas organizações.pt_BR
dc.language.isoporpt_BR
dc.rightsAcesso Abertopt_BR
dc.titleSolução para detecção de tunelamento DNS em ambiente de nuvem computacionalpt_BR
dc.typeDissertaçãopt_BR
dc.subject.keywordTunelamentopt_BR
dc.subject.keywordCanais de comandopt_BR
dc.subject.keywordCanais de controlept_BR
dc.subject.keywordAprendizagem de máquinapt_BR
dc.subject.keywordProtocolo Domain Name System (DNS)pt_BR
dc.contributor.advisorcoAlbuquerque, Robson de Oliveira-
dc.description.abstract1DNS tunneling uses DNS protocol features to establish command and control channels, thus being possibly exploited as a malicious tool for data exfiltration. Nowadays, security threats using DNS tunneling affect cross-platform systems within local and cloud computing resources. Many DNS tunnel detection studies combine feature extraction techniques and machine learning (ML) algorithms to achieve high levels of accuracy. However, training ML models on a large scale and in real-time remains an operational challenge and high computational cost for many institutions. This work proposes a methodology for DNS tunneling detection through hybrid resource collections using unsupervised anomaly detection algorithms. The validation uses collected DNS traffic from the AWS cloud computing platform to construct a dataset. The study shows the practical approach for C2, data exfiltration, infiltration, and heartbeat tunnel test situations, as high levels of anomaly detection are obtained even for those lightweight data during the transfer process, with a reduced number of DNS queries. The anomalies were effective for DNS tunneling tools like Iodine, Dnscat2, DNSExfiltrator, DNSStager, and Flightsim utility. The proposed model has an operational and modular approach and can be adapted to different cloud computing platforms, integrating on-premise logs resources, therefore, composing security control systems in organizations.pt_BR
dc.contributor.emaillorenabez@gmail.compt_BR
dc.description.unidadeFaculdade de Tecnologia (FT)pt_BR
dc.description.unidadeDepartamento de Engenharia Elétrica (FT ENE)pt_BR
dc.description.ppgPrograma de Pós-Graduação em Engenharia Elétrica, Mestrado Profissionalpt_BR
Aparece nas coleções:Teses, dissertações e produtos pós-doutorado

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.