http://repositorio.unb.br/handle/10482/45085
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
ARTIGO_ExistencePositiveEigenfunctions.pdf | 349 kB | Adobe PDF | Visualizar/Abrir |
Título: | Existence of positive eigenfunctions to an anisotropic elliptic operator via the sub-supersolution method |
Autor(es): | Ciani, Simone Figueiredo, Giovany de Jesus Malcher Suárez, Antonio |
E-mail do autor: | mailto:simone.ciani@unifi.it mailto:giovany@unb.br mailto:suarez@us.es |
ORCID: | https://orcid.org/0000-0003-1697-1592 https://orcid.org/0000-0002-6407-7758 |
Assunto: | p-Laplaciano Soluções positivas Autovalores |
Data de publicação: | 20-Ago-2020 |
Editora: | Springer |
Referência: | CIANI, Simone; FIGUEIREDO, Giovany M.; SUÁREZ, Antonio. Existence of positive eigenfunctions to an anisotropic elliptic operator via the sub-supersolution method. Archiv der Mathematik, v. 116, p. 85–95, 2021. DOI 10.1007/s00013-020-01518-4. Disponível em: https://link.springer.com/article/10.1007/s00013-020-01518-4. Acesso em: 03 nov. 2022. |
Abstract: | Using the sub-supersolution method, we study the existence of positive solutions for the anisotropic problem −∑i=1N∂∂xi(∣∣∣∂u∂xi∣∣∣pi−2∂u∂xi)=λuq−1 (0.1) where Ω is a bounded and regular domain of RN, q>1, and λ>0. |
Licença: | Archiv der Mathematik - articles are published open access under a CC BY licence (Creative Commons Attribution 4.0 International licence). The CC BY licence is the most open licence available and considered the industry 'gold standard' for open access; it is also preferred by many funders. This licence allows readers to copy and redistribute the material in any medium or format, and to alter, transform, or build upon the material, including for commercial use, providing the original author is credited. Fonte: https://www.springer.com/journal/13/how-to-publish-with-us#Fees%20and%20Funding. Acesso em: 03 nov. 2022. |
DOI: | https://doi.org/10.1007/s00013-020-01518-4 |
Aparece nas coleções: | Artigos publicados em periódicos e afins |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.