http://repositorio.unb.br/handle/10482/45084
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
ARTIGO_ExistencePositiveSolutionsGrowth.pdf | 350,59 kB | Adobe PDF | Visualizar/Abrir |
Título: | Existence of positive solutions for a class of singular and quasilinear elliptic problems with critical exponential growth |
Autor(es): | Arruda, Suellen Cristina Queiroz Figueiredo, Giovany de Jesus Malcher Nascimento, Rubia Gonçalves |
E-mail do autor: | mailto:scqarruda@ufpa.br mailto:giovany@unb.br mailto:ubia@ufpa.br |
Afiliação do autor: | Universidade Federal do Pará - UFPA, Faculdade de Ciências Exatas e Tecnologia Universidade de Brasília - UNB, Departamento de Matemática Universidade Federal do Pará - UFPA, Instituto de Ciências Exatas e Naturais |
Assunto: | Galerkin, Método de Desigualdades (Matemática) Soluções positivas Crescimento exponencial crítico |
Data de publicação: | 21-Jun-2021 |
Editora: | University of Helsinki |
Referência: | ARRUDA, Suellen Cristina Q.; FIGUEIREDO, Giovany M.; NASCIMENTO, Rubia G. Existence of positive solutions for a class of singular and quasilinear elliptic problems with critical exponential growth. Annales Fennici Mathematici, Helsinki, v. 46, n. 1, p. 395–420, 2021. DOI 10.5186/aasfm.2021.4626. Disponível em: https://afm.journal.fi/article/view/109593. Acesso em: 03 nov. 2022. |
Abstract: | In this paper we use Galerkin method to investigate the existence of positivesolution for a class of singular and quasilinear elliptic problems given by −div(a0(|∇u|p0)|∇u|p0−2∇u) =λ0uβ0+f0(u), u >0inΩ,u= 0on∂Ω,and its version for systems given by−div(a1(|∇u|p1)|∇u|p1−2∇u) =λ1uβ1+f1(v)inΩ,−div(a2(|∇v|p2)|∇v|p2−2∇v) =λ2vβ2+f2(u)inΩ,u, v >0inΩ,u=v= 0on∂Ω,whereΩ⊂RNis bounded smooth domain withN≥3and fori= 0,1,2we have2≤pi< N,0<βi≤1,λi>0andfiare continuous functions. The hypotheses on theC1-functionsai:R+→R+allow to consider a large class of quasilinear operators. |
Licença: | Annales Fennici Mathematici - The papers published in Ann. Fenn. Math. are distributed under the terms of Creative Commons Attribution-Noncommercial License (CC BY-NC 4.0). Fonte: https://afm.journal.fi/about. Acesso em: 03 nov. 2022. |
DOI: | https://doi.org/10.5186/aasfm.2021.4626 |
Aparece nas coleções: | Artigos publicados em periódicos e afins |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.