Campo DC | Valor | Idioma |
dc.contributor.advisor | Nantes Sobrinho, Daniele | - |
dc.contributor.author | Souza, Daniella Santaguida Magalhães de | - |
dc.date.accessioned | 2022-08-20T21:25:17Z | - |
dc.date.available | 2022-08-20T21:25:17Z | - |
dc.date.issued | 2022-08-20 | - |
dc.date.submitted | 2022-06-07 | - |
dc.identifier.citation | SOUZA, Daniella Santaguida Magalhães de. Grupos finitos com poucos elementos em órbitas por automorfismos. 2022. 80 f., il. Dissertação (Mestrado em Matemática) — Universidade de Brasília, Brasília, 2022. | pt_BR |
dc.identifier.uri | https://repositorio.unb.br/handle/10482/44597 | - |
dc.description | Dissertação (mestrado) — Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2022. | pt_BR |
dc.description.abstract | Modelagem e raciocínio equacional são onipresentes na Matemática e na Ciência da Computação. Técnicas de reescrita têm sido aplicadas com sucesso para formalizar e implementar
inferência automatizada em estruturas matemáticas dedutivas. Apresentar teorias equacionais
por meio da reescrita dá origem a um mecanismo para decidir a redução equacional da
teoria sempre que o sistema de reescrita for terminante e confluente, ou seja, sempre que for
convergente. Resolver problemas equacionais é um passo adiante que requer mais esforço
do que apenas usar reescrita. De fato, “estreitar” problemas equacionais é uma técnica
bem conhecida que adiciona à reescrita o poder necessário para buscar soluções; em outras
palavras, adiciona o poder de buscar instâncias das variáveis que ocorrem em um problema
equacional que “unifica” as equações.
Por sua vez, a lógica nominal foi desenvolvida para contornar as inconveniências apresentadas quando as variáveis são instanciadas. A abordagem nominal usa átomos nominais em
vez de variáveis para evitar a necessidade de renomeação de variáveis ao lidar com equações
na abordagem notacional padrão. A sintaxe nominal também inclui permutações de átomos
para distinguir algebricamente os átomos evitando colisões e capturas destes.
Neste trabalho, estudamos a reescrita nominal módulo comutatividade. Desenvolvemos o
método estreitamento nominal comutativo (nominal commutative narrowing) para lidar com
o problema de unificação nominal módulo teorias equacionais que incluem comutatividade,
o qual não é finitário dependendo da representação das soluções. | pt_BR |
dc.language.iso | Português | pt_BR |
dc.rights | Acesso Aberto | pt_BR |
dc.title | Nominal commutative narrowing | pt_BR |
dc.type | Dissertação | pt_BR |
dc.subject.keyword | Modelagem | pt_BR |
dc.subject.keyword | Raciocínio equacional | pt_BR |
dc.subject.keyword | Técnicas de reescrita | pt_BR |
dc.subject.keyword | Lógica nominal | pt_BR |
dc.rights.license | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. | pt_BR |
dc.description.abstract1 | Equational modelling and reasoning are ubiquitous in Mathematics and Computer Science.
Rewriting techniques have been applied successfully to formalize and implement automated
inference in mathematical deductive frameworks. Presenting equational theories by rewriting
gives rise to a mechanism to decide the equational reduct of the theory whenever the rewriting
system is terminating and confluent, i.e., whenever it is convergent. Solving equational
problems is a step further that requires more effort than just rewriting. Indeed, “narrowing”
equational problems is a well-known technique that adds to rewriting the required power
to search for solutions; in other words, it adds the power to search for instantiations of the
variables occurring in an equational problem that “unify” the equations.
On its side, the nominal logic has been developed to contour inconveniences presented
when variables are instantiated. The nominal approach uses nominal atoms instead of
variables to avoid the requirement of variable renaming when dealing with equations in
the standard notational approach. The nominal syntax also includes atom permutations to
algebraically distinguish atoms avoiding atom collisions and captures.
In this work, we study nominal rewriting modulo commutativity. We develop nominal
commutative narrowing to deal with the problem of nominal unification modulo equational
theories that include commutativity, which is not finitary depending on the representation of
solutions. | pt_BR |
dc.contributor.email | dani.sms@hotmail.com | pt_BR |
dc.description.unidade | Instituto de Ciências Exatas (IE) | pt_BR |
dc.description.unidade | Departamento de Matemática (IE MAT) | pt_BR |
dc.description.ppg | Programa de Pós-Graduação em Matemática | pt_BR |
Aparece nas coleções: | Teses, dissertações e produtos pós-doutorado
|