Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/44145
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_BoundingBox-freeInstance.pdf23,76 MBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorCarvalho, Osmar Luiz Ferreira de-
dc.contributor.authorCarvalho Júnior, Osmar Abílio de-
dc.contributor.authorAlbuquerque, Anesmar Olino de-
dc.contributor.authorSantana, Nickolas Castro-
dc.contributor.authorGuimarães, Renato Fontes-
dc.contributor.authorGomes, Roberto Arnaldo Trancoso-
dc.contributor.authorBorges, Díbio Leandro-
dc.date.accessioned2022-07-07T14:11:00Z-
dc.date.available2022-07-07T14:11:00Z-
dc.date.issued2022-04-21-
dc.identifier.citationCARVALHO, Osmar Luiz Ferreira de et al. Bounding box-free instance segmentation using semi-supervised iterative learning for vehicle detection. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, v. 15, p. 3403 - 3420, 2022. DOI: 10.1109/JSTARS.2022.3169128. Disponível em: https://ieeexplore.ieee.org/document/9761723. Acesso em: 07 jul. 2022.pt_BR
dc.identifier.urihttps://repositorio.unb.br/handle/10482/44145-
dc.language.isoInglêspt_BR
dc.publisherIEEEpt_BR
dc.rightsAcesso Abertopt_BR
dc.titleBounding box-free instance segmentation using semi-supervised iterative learning for vehicle detectionpt_BR
dc.typeArtigopt_BR
dc.subject.keywordImagens aéreaspt_BR
dc.subject.keywordVeículospt_BR
dc.subject.keywordAprendizagem profundapt_BR
dc.rights.licenseThis work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/pt_BR
dc.identifier.doi10.1109/JSTARS.2022.3169128pt_BR
dc.description.abstract1Vehicle classification is a hot computer vision topic, with studies ranging from ground-view to top-view imagery. Top-view images allow understanding city patterns, traffic management, among others. However, there are some difficulties for pixel-wise classification: most vehicle classification studies use object detection methods, and most publicly available datasets are designed for this task, creating instance segmentation datasets is laborious, and traditional instance segmentation methods underperform on this task since the objects are small. Thus, the present research objectives are as follows: first, propose a novel semisupervised iterative learning approach using the geographic information system software, second, propose a box-free instance segmentation approach, and third, provide a city-scale vehicle dataset. The iterative learning procedure considered the following: first, labeling a few vehicles from the entire scene, second, choosing training samples near those areas, third, training the deep learning model (U-net with efficient-net-B7 backbone), fourth, classifying the whole scene, fifth, converting the predictions into shapefile, sixth, correcting areas with wrong predictions, seventh, including them in the training data, eighth repeating until results are satisfactory. We considered vehicle interior and borders to separate instances using a semantic segmentation model. When removing the borders, the vehicle interior becomes isolated, allowing for unique object identification. Our procedure is very efficient and accurate for generating data iteratively, which resulted in 122 567 mapped vehicles. Metrics-wise, our method presented higher intersection over union when compared to box-based methods (82% against 72%), and per-object metrics surpassed 90% for precision and recall.pt_BR
dc.identifier.orcidhttps://orcid.org/ 0000-0002-5619-8525pt_BR
dc.identifier.orcidhttps://orcid.org/ 0000-0002-0346-1684pt_BR
dc.identifier.orcidhttps://orcid.org/ 0000-0003-1561-7583pt_BR
dc.identifier.orcidhttps://orcid.org/ 0000-0001-6133-6753pt_BR
dc.identifier.orcidhttps://orcid.org/ 0000-0003-4724-4064pt_BR
dc.identifier.orcidhttps://orcid.org/ 0000-0002-9555-043Xpt_BR
dc.identifier.orcidhttps://orcid.org/ 0000-0002-4868-0629pt_BR
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.