Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/43302
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2021_AliKhãnCairesRibeiroSantos.pdf760,86 kBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorNantes Sobrinho, Daniele-
dc.contributor.authorSantos, Ali Khan Caires Ribeiro-
dc.date.accessioned2022-04-04T17:56:31Z-
dc.date.available2022-04-04T17:56:31Z-
dc.date.issued2022-04-04-
dc.date.submitted2021-12-14-
dc.identifier.citationSANTOS, Ali Khan Caires Ribeiro. Técnicas Nominais e aplicações em Lógica de primeira ordem. 2021. 109 f., il. Dissertação (Mestrado em Matemática) — Universidade de Brasília, Brasília, 2021.pt_BR
dc.identifier.urihttps://repositorio.unb.br/handle/10482/43302-
dc.descriptionDissertação (mestrado) — Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2021.pt_BR
dc.description.abstractEsta dissertação apresenta um estudo sobre as Técnicas Nominais, introduzidas por Murdoch J. Gabbay e Andrew M. Pitts, que consistem em uma gama de técnicas, baseadas no conceito de conjuntos nominais, que descrevem novas maneiras de apresentar a sintaxe de sistemas formais envolvendo operações de ligação variável. Uma de suas principais aplicações envolve a determinação de um modelo nominal abstrato para a Lógica clássica de primeira ordem com igualdade L1, alicerçado em uma generalização nominal dos conceitos da teoria de reticulados usual. Com este propósito em mente, iremos explorar os conceitos necessários referentes as técnicas nominais para, em seguida, utilizá-los para realizar uma extensão das noções básicas da teoria de reticulados, onde definiremos conjuntos nominais parcialmente ordenados, bem como estabeleceremos as noções de ínfimos e supremos, para então obtermos a noção de reticulados nominais. Estabeleceremos também noções de distributividade e complementação para reticulados nominais e relacionaremos isso com o conceito de σ-álgebra, o qual irá nos permitir não só incorporar a operação de substituição no nosso modelo, como também generalizar a noção de substituição. Todas essas definições irão culminar na definição de uma estrutura algébrica nominal chamada de álgebra L1 e será esta estrutura que usaremos para interpretar a lógica de primeira ordem L1 e provar a sua correção, noção esta que liga a sintaxe e a semântica da lógica L1. Mais precisamente, a correção afirma que se Φ ⊢ Ψ for um sequente derivável em L1, então a sua interpretação JΦ ⊢ ΨK sobre uma álgebra L1 é verdadeira.pt_BR
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).pt_BR
dc.language.isoPortuguêspt_BR
dc.rightsAcesso Abertopt_BR
dc.titleTécnicas Nominais e aplicações em Lógica de primeira ordempt_BR
dc.typeDissertaçãopt_BR
dc.subject.keywordTécnicas nominaispt_BR
dc.subject.keywordConjuntos nominaispt_BR
dc.subject.keywordEquivariânciapt_BR
dc.subject.keywordTeoria de reticuladospt_BR
dc.subject.keywordSupremospt_BR
dc.subject.keywordLógica de primeira ordempt_BR
dc.rights.licenseA concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.pt_BR
dc.description.abstract1This dissertation presents a study ofNominal Techniques, introduced by Murdoch J. Gabbayand Andrew Pitts, which consist of a range of techniques, based on the concept ofnominalsets, that describe new ways of presenting the syntax of formal systems involving variable-binding operations. One of its main applications involves the determination of an abstractnominal model for theClassical first-order logic with equalityL1, based on a nominalgeneralization of the concepts of usual lattice theory. With this purpose in mind, we willexplore the necessary concepts regarding nominal techniques and then use them to extendthe basics of lattice theory, where we will definepartially ordered nominal sets(nominalposets), as well as establish the notions of infimum and supremum, in order to obtain thenotion ofnominal lattices.We will also establish notions of distributivity and complementation and we will relatethis to the concept ofσ-algebras, which will allow us not only to incorporate the substitutionoperation in our model, but also to generalize the notion of substitution. All these definitionswill culminate in the definition of a nominal algebraic structure calledL1algebraand it willbe this structure that we will use to interpret the first-order logicL1and prove its soundness,a notion that links the syntax and semantics of the logicL1. More precisely, soundness statesthat ifΦ⊢Ψis a derivable sequent inL1, then its interpretationJΦ⊢ΨKover aL1algebrais true.pt_BR
dc.contributor.emailalikhancaires14@hotmail.compt_BR
dc.description.unidadeInstituto de Ciências Exatas (IE)pt_BR
dc.description.unidadeDepartamento de Matemática (IE MAT)pt_BR
dc.description.ppgPrograma de Pós-Graduação em Matemáticapt_BR
Aparece nas coleções:Teses, dissertações e produtos pós-doutorado

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.