Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/42580
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2021_GustavoDurãesAlmeida.pdf1,43 MBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorNakano, Eduardo Yoshio-
dc.contributor.authorAlmeida, Gustavo Durães-
dc.date.accessioned2021-12-09T03:55:32Z-
dc.date.available2021-12-09T03:55:32Z-
dc.date.issued2021-12-08-
dc.date.submitted2021-09-27-
dc.identifier.citationALMEIDA, Gustavo Durães. Modelagem de risco de crédito via LSTM. 2021. 38 f., il. Dissertação (Mestrado em Estatística)—Universidade de Brasília, Brasília, 2021.pt_BR
dc.identifier.urihttps://repositorio.unb.br/handle/10482/42580-
dc.descriptionDissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Estatística, 2021.pt_BR
dc.description.abstractA modelagem de risco de crédito utiliza frequentemente de variáveis explicativas comportamentais medidas de forma longitudinal afim de estimar a probabilidade de não pagamento de uma operação de crédito. Usualmente, as informações longitudinais são sintetizadas atraváes de estatísticas resumos e em seguida são utilizadas como preditoras em modelos lineares de classificação binária. Este trabalho avalia a utilização e performance de uma rede neural recorrente (Long short-term memory), que é capaz de processar integralmente as vari ́veis explicativas longitudinais, como uma alternativa à regressão logística na modelagem de risco de crédito utilizando dados reais da instituição financeira Sicoob.pt_BR
dc.language.isoPortuguêspt_BR
dc.rightsAcesso Abertopt_BR
dc.titleModelagem de risco de crédito via LSTMpt_BR
dc.typeDissertaçãopt_BR
dc.subject.keywordRisco de créditopt_BR
dc.subject.keywordAprendizado de máquinapt_BR
dc.subject.keywordAprendizado profundopt_BR
dc.subject.keywordRedes neurais recorrentespt_BR
dc.subject.keywordLong Short-term Memorypt_BR
dc.rights.licenseA concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.pt_BR
dc.description.abstract1Credit risk modelling usually utilizes longitudinal behavioural data as explanatory variables in default classification tasks. Usually, the aforementioned longitudinal data is summarized using domain appropriate summary statistics in order to transform the longitudinal data in linear data so that the information can be used as input for a logistic regression. This work assess the usability and performance of a recurrent neural network, that is capable of consuming the longitudinal data directly, as and alternative for a logistic regression model in the credit risk context using real data from a financial institution named Sicoob.pt_BR
dc.contributor.emailgustavoduraes0@gmail.compt_BR
dc.description.unidadeInstituto de Ciências Exatas (IE)pt_BR
dc.description.unidadeDepartamento de Estatística (IE EST)pt_BR
dc.description.ppgPrograma de Pós-Graduação em Estatísticapt_BR
Aparece nas coleções:Teses, dissertações e produtos pós-doutorado

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.