Skip navigation
Veuillez utiliser cette adresse pour citer ce document : http://repositorio.unb.br/handle/10482/39652
Fichier(s) constituant ce document :
Fichier Description TailleFormat 
ARTIGO_ImputationMethodReduce.pdf945,54 kBAdobe PDFVoir/Ouvrir
Titre: Imputation method to reduce undetected severe acute respiratory infection cases during the coronavirus disease outbreak in Brazil
Auteur(s): Oliveira, Silvano Barbosa de
Ganem, Fabiana
Araújo, Wildo Navegantes de
Casabona, Jordi
Sanchez, Mauro Niskier
Croda, Julio
metadata.dc.identifier.orcid: http://orcid.org/0000-0002-6665-6825
Assunto:: Covid-19
Infecções respiratórias
Teste de laboratório
Date de publication: 2020
Editeur: Sociedade Brasileira de Medicina Tropical - SBMT
Référence bibliographique: OLIVEIRA, Silvano Barbosa de et al. Imputation method to reduce undetected severe acute respiratory infection cases during the coronavirus disease outbreak in Brazil. Revista da Sociedade Brasileira de Medicina Tropical, Uberaba, v. 53, e20200528, 2020. DOI: https://doi.org/10.1590/0037-8682-0528-2020. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0037-86822020000100659&lng=en&nrm=iso. Acesso em: 23 nov. 2020. Epub 14-Set-2020.
Abstract: INTRODUCTION: The coronavirus disease (COVD-19) outbreak has overburdened the surveillance of severe acute respiratory infections (SARIs), including the laboratory network. This study was aimed at correcting the absence of laboratory results of reported SARI deaths. METHODS: The imputation method was applied for SARI deaths without laboratory information using clinico-epidemiological characteristics. RESULTS: Of 84,449 SARI deaths, 51% were confirmed with COVID-19 while 3% with other viral respiratory diseases. After the imputation method, 95% of deaths were reclassified as COVID-19 while 5% as other viral respiratory diseases. CONCLUSIONS: The imputation method was a useful and robust solution (sensitivity and positive predictive value of 98%) for missing values through clinical & epidemiological characteristics.
metadata.dc.description.unidade: Faculdade de Ciências da Saúde (FS)
Departamento de Saúde Coletiva (FS DSC)
DOI: https://doi.org/10.1590/0037-8682-0528-2020
Collection(s) :Artigos publicados em periódicos e afins
UnB - Covid-19

Affichage détaillé " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/39652/statistics">



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.