Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/36174
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_SoilClassMap.pdf1,03 MBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorPoppiel, Raúl R.-
dc.contributor.authorLacerda, Marilusa Pinto Coelho-
dc.contributor.authorDemattê, José A. M.-
dc.contributor.authorOliveira Jr., Manuel P.-
dc.contributor.authorGallo, Bruna C.-
dc.contributor.authorSafanelli, José L.-
dc.date.accessioned2020-01-21T13:09:01Z-
dc.date.available2020-01-21T13:09:01Z-
dc.date.issued2019-
dc.identifier.citationPOPPIEL, Raúl R. et al. Soil class map of the Rio Jardim watershed in Central Brazil at 30 meter spatial resolution based on proximal and remote sensed data and MESMA method. Data in Brief, v. 25, 104070, 2019. DOI: https://doi.org/10.1016/j.dib.2019.104070. Disponível em: https://www.sciencedirect.com/science/article/pii/S235234091930424X. Acesso em: 21 jan. 2020.pt_BR
dc.identifier.urihttps://repositorio.unb.br/handle/10482/36174-
dc.language.isoInglêspt_BR
dc.publisherElsevier Inc.pt_BR
dc.rightsAcesso Abertopt_BR
dc.titleSoil class map of the Rio Jardim watershed in Central Brazil at 30 meter spatial resolution based on proximal and remote sensed data and MESMA methodpt_BR
dc.typeArtigopt_BR
dc.subject.keywordMapeamento digital do solopt_BR
dc.subject.keywordSolos - manejopt_BR
dc.subject.keywordPlanejamento agrícolapt_BR
dc.rights.license© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).pt_BR
dc.identifier.doihttps://doi.org/10.1016/j.dib.2019.104070pt_BR
dc.description.abstract1Geospatial soil information is critical for agricultural policy formulation and decision making, land-use suitability analysis, sustainable soil management, environmental assessment, and other research topics that are of vital importance to agriculture and economy. Proximal and Remote sensing technologies enables us to collect, process, and analyze spectral data and to retrieve, synthesize, visualize valuable geospatial information for multidisciplinary uses. We obtained the soil class map provided in this article by processing and analyzing proximal and remote sensed data from soil samples collected in toposequences based on pedomorphogeological relashionships. The soils were classified up to the second categorical level (suborder) of the Brazilian Soil Classification System (SiBCS), as well as in the World Reference Base (WRB) and United States Soil Taxonomy (ST) systems. The raster map has 30 m resolution and its accuracy is 73% (Kappa coefficient of 0.73). The soil legend represents a soil class followed by its topsoil color.pt_BR
dc.description.unidadeFaculdade de Agronomia e Medicina Veterinária (FAV)-
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.