Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/35437
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2019_PedroHenriqueToledodeOliveiraSousa.pdf1,23 MBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorAndrade, Joanlise Marco de Leon-
dc.contributor.authorSousa, Pedro Henrique Toledo de Oliveira-
dc.date.accessioned2019-09-16T11:36:07Z-
dc.date.available2019-09-16T11:36:07Z-
dc.date.issued2019-09-16-
dc.date.submitted2019-03-21-
dc.identifier.citationSOUSA, Pedro Henrique Toledo de Oliveira. Tópicos em regularização com uma aplicação em Seleção Genômica. 2019. 95 f., il. Dissertação (Mestrado em Estatística)—Universidade de Brasília, Brasília, 2019.pt_BR
dc.identifier.urihttp://repositorio.unb.br/handle/10482/35437-
dc.descriptionDissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Estatística, 2019.pt_BR
dc.description.abstractOs métodos de regularização foram desenvolvidos para contornar problemas de overfitting e são amplamente utilizados em modelagens preditivas. Neste trabalho realiza-se uma breve introdução sobre a álgebra de matrizes relacionada a tais métodos, com ênfase nas inversas generalizadas, no posto e nas possíveis dimensões dessas matrizes, bem como apresentar uma solução geral, para sistemas lineares consistentes e inconsistentes. Em seguida, as decomposições de matrizes SVD (Singular Value Decomposition) e GSVD (Generalized Singular Value Decomposition) são utilizadas para a implementação dos modelos de regularização Tikhonov e TSVD e, posteriormente, analisa-se outros dois métodos de regularização (LASSO e LASSO Bayesiano), que estimam os coeficientes e simultaneamente realizam a seleção de variáveis. Como aplicação, realiza-se uma avaliação da qualidade preditiva dos modelos de regularização no contexto de Seleção Genômica em dados genéticos superdimensionados e de alta complexidade. Os referidos dados caracterizam-se por conter informações do DNA (genótipos) de plantas de eucalipto e a finalidade da análise é desenvolver uma abordagem alternativa aos programas de melhoramento genético tradicionais. Em resumo, os resultados mostram que os modelos para fenótipos com maior herdabilidade apresentam medidas de previsão superiores. Por fim, os métodos que conduzem a seleção de variáveis se mostraram superioridade nas tarefas preditivas em todos os casos avaliados.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).pt_BR
dc.language.isoPortuguêspt_BR
dc.rightsAcesso Abertopt_BR
dc.titleTópicos em regularização com uma aplicação em Seleção Genômicapt_BR
dc.typeDissertaçãopt_BR
dc.subject.keywordModelagem matemáticapt_BR
dc.subject.keywordSeleção de variáveispt_BR
dc.subject.keywordValidação cruzadapt_BR
dc.subject.keywordEucalipto - melhoramento genéticopt_BR
dc.rights.licenseA concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.pt_BR
dc.contributor.advisorcoAndrade, Bernardo Borba de-
dc.description.abstract1Regularization methods have been developed to overcome overfitting and are widely used in predictive modeling. This study introduces the matrix algebra related to such methods, with emphasis on the generalized inverse, the rank and the possible dimensions of those matrices, while presenting a general solution for consistent and inconsistent linear systems. Next, it employs the SVD (Singular Value Decomposition) and GSVD (Generalized Singular Value Decomposition) matrix decompositions to implement the Tikhonov and TSVD regularization models, and then analyzes two other regularization methods – namely, LASSO and Bayesian LASSO – that estimate the coefficients and simultaneously perform the variable selection. In addition, the study conducts an evaluation of the predictive accuracy of the models applied to complex high-dimensional data in the context of Genomic Selection. The data contains DNA information (genotypes) from eucalyptus plants, and the purpose of the analysis is to develop an alternative approach to the traditional programs for genetic improvement of species. In summary, the results show that models which were applied using phenotypes with higher heritability have better predictive ability. The methods that conduct variable selection were superior in the predictive tasks for all evaluated cases.pt_BR
dc.description.unidadeInstituto de Ciências Exatas (IE)pt_BR
dc.description.unidadeDepartamento de Estatística (IE EST)pt_BR
dc.description.ppgPrograma de Pós-Graduação em Estatísticapt_BR
Aparece nas coleções:Teses, dissertações e produtos pós-doutorado

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.