Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/33918
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2018_RobertoNunesMourão.pdf1,12 MBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorRamos, Guilherme Novaes-
dc.contributor.authorMourão, Roberto Nunes-
dc.date.accessioned2019-01-31T19:30:21Z-
dc.date.available2019-01-31T19:30:21Z-
dc.date.issued2019-01-31-
dc.date.submitted2018-06-29-
dc.identifier.citationMENDONÇA, Tharcísio Marcos Ferreira de Queiroz. Mineração de dados para previsão de renda de clientes com contas-correntes digitais. 2018. xiv, 56 f., il. Dissertação (Mestrado Profissional em Computação Aplicada)—Universidade de Brasília, Brasília, 2018.pt_BR
dc.identifier.urihttp://repositorio.unb.br/handle/10482/33918-
dc.descriptionDissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação, 2018.pt_BR
dc.description.abstractUm banco brasileiro disponibilizou a abertura de conta bancária por meio de um aplicativo móvel, o que geralmente exige muito pouca informação do usuário. Essa falta de dados prejudica os atuais modelos preditivos aplicados na seleção de clientes para campanhas de marketing. Com o intuito de atenuar isso, este trabalho investiga o uso da Mineração de Dados a fim de criar um modelo preditivo capaz de identificar a renda desses clientes. Para tanto, como treinamento, usa os dados de um grupo de clientes, os quais, de forma semelhante, utilizam o aplicativo móvel do banco. Todavia, abriram suas contas indo às agências, local onde comprovaram suas rendas. Os dados utilizados incluem informações cadastrais, demográficas e características dos smartphones dos clientes. O processo CRISP-DM foi aplicado para comparar várias abordagens, tais como: Regressão Logística, Random Forest, Redes Neurais Artificiais, Gradient Boosting Machine e Hillclimbing Ensemble Selection with Bootstrap Sampling. Os resultados mostraram que o Gradient Boosting Machine obteve o melhor resultado com Acurácia de 92 % e F-Measure de 62 %.pt_BR
dc.language.isoPortuguêspt_BR
dc.rightsAcesso Abertopt_BR
dc.titleMineração de dados para previsão de renda de clientes com contas-correntes digitaispt_BR
dc.typeDissertaçãopt_BR
dc.subject.keywordMineração de dados (Computação)pt_BR
dc.subject.keywordBancos - produtos e serviçospt_BR
dc.subject.keywordBancos - administraçãopt_BR
dc.rights.licenseA concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.pt_BR
dc.description.abstract1Digital bank accounts require little information from customers to enable simple banking services, and the absence of income data hampers a focused targeting of customers for additional products/services. This study presents a comparison of predictive models to identify a customer’s income bracket, by mining digital account data. The information available to build the models includes customers’ registered data, demographics, house prices, and smartphone features. The models are applied to a set of customers with regular accounts, who have income data and features similar to those with digital accounts. The models’ performances are compared to the model currently in use in a private bank. Several approaches were used, in a CRISP-DM process: Logistic Regression, Random Forest, Artificial Neural Networks, Gradient Boosting Machine, and Hill-Climbing Ensemble with Bootstrap Sampling. Experimental results indicate the Gradient Boosting Machine model achieved the best results, with a 92% Accuracy and a 62% F-Measure.pt_BR
dc.description.unidadeInstituto de Ciências Exatas (IE)pt_BR
dc.description.unidadeDepartamento de Ciência da Computação (IE CIC)pt_BR
dc.description.ppgPrograma de Pós-Graduação em Computação Aplicada, Mestrado Profissionalpt_BR
Aparece nas coleções:Teses, dissertações e produtos pós-doutorado

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.