Campo DC | Valor | Idioma |
dc.contributor.advisor | Carrión Riveros, Carlos Maber | - |
dc.contributor.author | Machado, Cid Dias Ferraz | - |
dc.date.accessioned | 2018-09-26T21:42:21Z | - |
dc.date.available | 2018-09-26T21:42:21Z | - |
dc.date.issued | 2018-09-26 | - |
dc.date.submitted | 2018-03-29 | - |
dc.identifier.citation | MACHADO, Cid Dias Ferraz. Hipersuperfícies Weingarten de tipo esférico. 2018. 69 f., il. Tese (Doutorado em Matemática)—Universidade de Brasília, Brasília, 2018. | pt_BR |
dc.identifier.uri | http://repositorio.unb.br/handle/10482/32706 | - |
dc.description | Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2018. | pt_BR |
dc.description.abstract | Neste trabalho generalizamos uma parametrização obtida por Corro em [6] no espaço Euclidiano tridimensional, e usamos essa parametrização para estudar uma classe de hipersuperfícies orientadas no espaço Euclidiano, ditas hipersuperfícies Weingarten de tipo esférico, satisfazendo uma relação especial tipo Weingarten entre as r-ésimas curvaturas médias. Classificamos as hipersuperfíciesWeingarten de tipo esférico de rotação. Estudamos uma classe de hipersuperfícies chamadas hipersuperfícies tipo esférico, e mostramos que no caso bidimensional, esta classe coincide com as superfícies Weingarten de tipo esférico. Também damos uma caracterização de uma classe de hipersuperfícies de Dupin e estudamos superfícies com invariantes de Laplace nulo, além de dar uma caracterização das superfícies mínimas de Laguerre. | pt_BR |
dc.language.iso | Português | pt_BR |
dc.rights | Acesso Aberto | pt_BR |
dc.title | Hipersuperfícies Weingarten de tipo esférico | pt_BR |
dc.title.alternative | Weingarten hypersurfaces of spherical type | pt_BR |
dc.type | Tese | pt_BR |
dc.subject.keyword | Hipersuperfícies (Matemática) | pt_BR |
dc.subject.keyword | Superfícies esféricas | pt_BR |
dc.subject.keyword | Congruência de esferas | pt_BR |
dc.rights.license | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. | pt_BR |
dc.description.abstract1 | We generalize a parameterization obtained by Corro in [6] in the three-dimensional Euclidean space, and we use this parameterization to study a class of oriented hypersurfaces in Euclidean space, called of Weingarten hypersurface of spherical type, satisfying a special relation between the rth mean curvatures. We classify the Weingarten hipersurface of spherical type of rotation. We studied a class of hypersurfaces called hypersurfaces of spherical type, and we show that in the two-dimensional case, this class coincides with the Weingarten surfaces of spherical type. We also give a characterization of Dupin hypersurfaces and study surfaces with Laplace invariants null, as well as characterize the Laguerre minimal surfaces. | pt_BR |
Aparece nas coleções: | Teses, dissertações e produtos pós-doutorado
|