http://repositorio.unb.br/handle/10482/22042
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
ARTIGO_MicrobialDiversity Cerrado.PDF | 2,35 MB | Adobe PDF | Visualizar/Abrir |
Título: | Microbial diversity in cerrado biome (neotropical savanna) soils |
Autor(es): | Castro, Alinne Pereira de Silva, Maria Regina Silveira Sartori da Quirino, Betânia Ferraz Bustamante, Mercedes Maria da Cunha Kruger, Ricardo Henrique |
Assunto: | Cerrados Comunidades biológicas |
Data de publicação: | Fev-2016 |
Editora: | Plos One |
Referência: | CASTRO, Alinne Pereira de. Microbial diversity in cerrado biome (neotropical savanna) soils. Plos One, p. 1-16, 5. fev. 2016. Disponível em: <http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0148785#sec007>. Acesso em: 12 dez. 2016. DOI: http://dx.doi.org/10.1371/journal.pone.0148785 |
Resumo: | The Cerrado, the largest savanna region in South America, is located in central Brazil. Cerrado physiognomies, which range from savanna grasslands to forest formations, combined with the highly weathered, acidic clay Cerrado soils form a unique ecoregion. In this study, high-throughput sequencing of ribosomal RNA genes was combined with shotgun metagenomic analysis to explore the taxonomic composition and potential functions of soil microbial communities in four different vegetation physiognomies during both dry and rainy seasons. Our results showed that changes in bacterial, archaeal, and fungal community structures in cerrado denso, cerrado sensu stricto, campo sujo, and gallery forest soils strongly correlated with seasonal patterns of soil water uptake. The relative abundance AD3, WPS-2, Planctomycetes, Thermoprotei, and Glomeromycota typically decreased the rainy season, whereas the relative abundance of Proteobacteria and Ascomycota increased. In addition, analysis of shotgun metagenomic data revealed a significant increase in the relative abundance of genes associated with iron acquisition and metabolism, dormancy, and sporulation during the dry season, and an increase in the relative abundance of genes related to respiration and DNA and protein metabolism during the rainy season. These gene functional categories are associated with adaptation to water stress. Our results further the understanding of how tropical savanna soil microbial communities may be influenced by vegetation covering and temporal variations in soil moisture. |
Licença: | Copyright: © 2016 Pereira de Castro et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Fonte: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0148785. Acesso em: 12 dez. 2016. |
DOI: | http://dx.doi.org/10.1371/journal.pone.0148785 |
Aparece nas coleções: | Artigos publicados em periódicos e afins |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.