

Universidade de Brasília

FACULDADE DE MEDICINA PROGRAMA DE PÓS-GRADUAÇÃO EM PATOLOGIA MOLECULAR Laboratório de Bioquímica e Química de Proteínas

TESE

SUBPROTEÔMICA DE *TRYPANOSOMA CRUZI*: PROTEÍNAS BÁSICAS E FOSFOPROTEOMA

ADRIANA DIAS MAGALHÃES

Brasília -2010-

SUBPROTEÔMICA DE *TRYPANOSOMA CRUZI*: PROTEÍNAS BÁSICAS E FOSFOPROTEOMA

Tese apresentada ao Programa de Pós-Graduação em Patologia Molecular como pré-requisito para a obtenção do título de Doutor em Patologia Molecular

Orientador: Prof. Dr. Carlos André Ornelas Ricart Co-orientador: Prof. Dr. Sebastién Olivier Charneu

> Brasília -2010-

Dedíco:

Ao amor das mínhas vídas, Carlos Enríque e Aos meus país, Antônio Augusto e María José

AGRADECIMENTOS

É com muito carinho que escrevo esta seção de agradecimentos, pois as pessoas que aqui menciono tornaram possível a realização deste trabalho, fizeram parte do meu día a día neste período e significaram muito para minha formação.

Ao Prof. Dr. Carlos André Ricart por realmente me orientar durante esses 10 anos, além da paciência, compreensão e incentivo que permitiu a realização desse trabalho.

Ao Prof. Dr. Sébastien Charnau pela co-orientação e amizade. Por sua paixão a ciência que tanto me motivou e ensinou.

Aos professores Dr. Jaíme M. Santana e Dr. Antônio Teixeira por fornecerem a infra-estrutura necessária para a manutenção das culturas celulares.

Ao amigo Rafael pela ajuda na bancada e principalmente pela amizade.

Ao Rayner Myr que durante sua iniciação científica ajudou com algumas identíficações de proteínas correspondente a seção 5.2.

Ao amigo Prof. Dr. Jaime Paba que me ensinou a dar os primeiros passos no trabalho com *T. cruzí*.

Aos professores Dr. Marcelo Valle de Sousa, Dr. Wagner Fontes, Dr.^a Maríana de Souza Castro, Dr.^a Consuelo Medeiros Rodrígues de Líma, Dr. Pedro Portugal Zanotta por contribuírem na mínha formação profíssional e pelo auxílio no desenvolvimento deste trabalho.

A Antônio Rufino pela amizade e ao Nuno pelo apoio técnico durante a realização dessa tese.

As menínas do LBQP Anne Carolíne, Elaine, Díana, Rosa, Alininha, Jéssica, Fabiane, Michelle por tornarem o ambiente de trabalho agradável e pelas conversar produtívas... com cavalos e coelhos perdidos na floresta.

Aos colegas que me ajudaram durante a tese: Anna, Allan, Camila, Everton, Fábio, Gabriel, Humberto, Jaques, Jimmy, Karina, Lanuse, Liudy, Líz.

Ao meu cumpadre, Prof. Dr. Ricardo Bastos Cunha, que foi a primeira pessoa a me falar de proteínas quando eu tinha 10 anos! A culpa de eu estar aqui também é sua... pois me mostrou o quão bonito é ser pesquisador; pelos momentos de discussão científica e por ter sido um amígo de todas as horas.

As mínhas patas predíletas: Alíne, Carla e Carol.

A mínha amiga Mirta que mesmo do outro lado do mundo continua sendo amiga de todas as horas.

A Thaís pelos 20 anos de amizade, pelo companherismo, confidências, momentos difíceis, momentos alegres e por ser sempre um ponto de referência para mim.

A Polyana pela amizade e carínho.

Aos meus irmãos Márcio, Alaíde e Micheline por acreditarem em mím e por estarem ao meu lado em todos os momentos.

Aos meus cunhados Paulo Marcelo e Adríana María por serem pra mím como írmãos.

Aos meus sobrinhos Matheus, Marcelinho, Maria Clara, Isadora, Antônio Augusto, Mariana, Pedro e Miguel por proporcionarem momentos de felicidade e descontração.

Ao Monte Alverne, lugar onde encontro paz! A Tiemi e as minhas crianças da evangelização por sempre me mostrarem o "algo mais" que devemos em nossa vida.

Ao amigo e "guru" José Rubens por ser uma pessoa iluminada e por estar ao meu lado na busca do caminho espíritual.

As minhas tias Darcy, Cândida e Concita pelo apoio.

Ao meu pai por acreditar em mim, pelo apoio nos momentos difíceis e pelo seu amor à família que foi importante na construção de um verdadeiro lar do qual me orgulho muito de fazer parte.

Agradeço à mínha mãe pelo amor, incentivo, amizade, dedicação, por sempre me mostrar a importância do estudo, por acreditar no meu potencial e por ser tudo em mínha vida. A culpa também foi sua de eu ter chegado até aquí.

A minha sogra Maria Rubiela, meu sogro Jorge Enrique e minhas cunhadas Laura e Maria Fernanda.

Como de costume sempre deixo a melhor parte para o final \textcircled . Agradeço ao meu Carlos Enrique!! Marído, amigo, médico, estatístico, cozinheiro, massagista, psicólogo, evangelizador, colombiano (sim!! essa também é uma qualidade sua!)..., enfim... Você acreditou em mim mesmo quando eu mesma não acreditava mais... Você segurou minha mão quando precisei, olhou nos meus olhos, me acalmou, me trouxe paz... Você me fez desistir de asílos e acreditar em varandas... Dizem que as pessoas se completam quando encontram a tampa da panela, a metade da laranja... mas eu não acredito nisso!... pra mim a pessoa se completa quando se encontra com outra pessoa que é completa... quando encontram harmonia na caminhada, quando juntos traçam metas... 𝔅 eu encontrei você! Obrigada por ser completo e por me completar... por estar aqui comigo nessa vida! Amo-te!!

Agradeço também a OMS, FAPDF, FINEP e ao CNPq pelo apoio financeiro e à Universidade de Brasilia que possibilitaram o desenvolvimento deste trabalho.

"...Toda transformação começa sempre caótica e desconfortável. Os caminhos conhecidos são seguros e fáceis, mas só conduzem aos lugares onde já estamos e não desejamos ficar.

> O camínho do novo é cheio de riscos, surpresas e cansaço mas sempre premia os que o escolhem com a chance de descobrirem e experimentarem a Vida que imaginaram viver."

> > Geraldo Eustáquío de Souza

Sumário

Resumo1
Abstract 2
1. Introdução
1.1. Doença de Chagas
1.2. Diferenciação em <i>T. cruzi</i>
1.3. Metabolismo de <i>T. cruzi</i> 10
1.4. Regulação da expressão gênica em <i>T. cruzi</i> 12
1.5. Expressão de proteínas estágio específicas de <i>T. cruzi</i>
1.6. Genômica de <i>T. cruzi</i> 14
1.7. Proteômica de <i>T. cruzi</i> 15
1.8. Fosfoproteômica 21
1.8. Técnicas proteômicas
2. Justificativa
2. Justificativa
2. Justificativa 32 3. Objetivos 35 3.1. Objetivo geral 36
 2. Justificativa
 2. Justificativa
2. Justificativa 32 3. Objetivos 35 3.1. Objetivo geral 36 3.2. Objetivos específicos 36 4. Material e Métodos 37 4.1. Cultura e obtenção de parasitos 38
2. Justificativa 32 3. Objetivos 35 3.1. Objetivo geral 36 3.2. Objetivos específicos 36 4. Material e Métodos 37 4.1. Cultura e obtenção de parasitos 38 4.2. Solubilização das proteínas 38
2. Justificativa 32 3. Objetivos 35 3.1. Objetivo geral 36 3.2. Objetivos específicos 36 4. Material e Métodos 37 4.1. Cultura e obtenção de parasitos 38 4.2. Solubilização das proteínas 38 4.3. Eletroforese bidimensional (2-DE) 38 4.3.1. "Gel dois-em-um" 39
2. Justificativa 32 3. Objetivos 35 3.1. Objetivo geral 36 3.2. Objetivos específicos 36 3.2. Objetivos específicos 36 4. Material e Métodos 37 4.1. Cultura e obtenção de parasitos 38 4.2. Solubilização das proteínas 38 4.3. Eletroforese bidimensional (2-DE) 38 4.3.1. "Gel dois-em-um" 39 4.4. Detecção de fosfoproteínas 41
2. Justificativa 32 3. Objetivos 35 3.1. Objetivo geral 36 3.2. Objetivos específicos 36 3.2. Objetivos específicos 36 4. Material e Métodos 37 4.1. Cultura e obtenção de parasitos 38 4.2. Solubilização das proteínas 38 4.3. Eletroforese bidimensional (2-DE) 38 4.3.1. "Gel dois-em-um" 39 4.4. Detecção de fosfoproteínas 41 4.5. Análises de imagens 41
2. Justificativa 32 3. Objetivos 35 3.1. Objetivo geral 36 3.2. Objetivos específicos 36 3.2. Objetivos específicos 36 4. Material e Métodos 37 4.1. Cultura e obtenção de parasitos 38 4.2. Solubilização das proteínas 38 4.3. Eletroforese bidimensional (2-DE) 38 4.3.1. "Gel dois-em-um" 39 4.4. Detecção de fosfoproteínas 41 4.5. Análises de imagens 41 4.6. Análises de imagens 46 4.6.1. Comparação entre as formas epimastigostas e tripomastigotas com o uso da técnica "gel dois-em-um" 46 4.6.2. Proteômica comparativa entre as formas tripomastigota e amastigota na região alcalina de pH 46
2. Justificativa 32 3. Objetivos 35 3.1. Objetivo geral 36 3.2. Objetivos específicos 36 3.2. Objetivos específicos 36 4. Material e Métodos 37 4.1. Cultura e obtenção de parasitos 38 4.2. Solubilização das proteínas 38 4.3. Eletroforese bidimensional (2-DE) 38 4.3. I. "Gel dois-em-um" 39 4.4. Detecção de fosfoproteínas 41 4.5. Análises de imagens 41 4.6. Análises de imagens 41 4.6. Análise ontre as formas epimastigostas e tripomastigotas com o uso da técnica "gel dois-em-um" 46 4.6.2. Proteômica comparativa entre as formas tripomastigota e amastigota na região alcalina de pH 46 4.6.3. Análise do fosfoproteoma 47
2. Justificativa 32 3. Objetivos 35 3.1. Objetivo geral 36 3.2. Objetivos específicos 36 3.2. Objetivos específicos 36 4. Material e Métodos 37 4.1. Cultura e obtenção de parasitos 38 4.2. Solubilização das proteínas 38 4.3. Eletroforese bidimensional (2-DE) 38 4.3.1. "Gel dois-em-um" 39 4.4. Detecção de fosfoproteínas 41 4.5. Análises de imagens 41 4.6. Análises de imagens 41 4.6. Análises de imagens 46 4.6.2. Proteômica comparativa entre as formas tripomastigotas com o uso da técnica "gel dois-em-um" 46 4.6.3. Análise do fosfoproteoma 47 4.7. Identificação de proteínas - PMF e MS/MS. 47

5. Análise do subproteoma de proteínas básicas de <i>T. cruzi</i>	. 50
5.1. Construção de 2-DE alcalinos e comparação entre epimastigotas e tripomastigota	as
	51
5.1.1. Construção de 2-DE alcalino para a forma epimastigota de T. cruzi	52
5.1.2. Análise comparativa entre as formas epimastigota e tripomastigota usando a	
técnica do "gel dois-em-um"	54
5.1.1. Conclusões	62
5.2. Subproteômica comparativa entre as formas tripomastigota e amastigota na regiã	io
alcalina de pH	63
5.2.1. Conclusões	84
6. Variação do fosfoproteoma durante a amastigogênese	. 85
6.1. Conclusões	119
7. Bibliografia	120
Anexo	142

Índice de Figuras

Figura 1. Distribuição da doença de Chagas na América Latina5
Figura 2. Sinal de Romaña7
Figura 3. Ciclo de transmissão do Trypanosoma cruzi
Figura 4. Etapas da eletroforese bidimensional25
Figura 5. Processo de ionização por MALDI29
Figura 6. Resultado obtido em busca por PMF
Figura 7. Esquema ilustrando o "gel dois-em-um"40
Figura 8. Fluxograma da análise de imagens do experimento "gel dois-em-
um" entre as formas epimastigotas (E) e tripomastigota (T)43
Figura 9. Fluxograma da análise de imagens do experimento tripomastigota
(T)/amastigota (A) básico44
Figura 10. Fluxograma da análise de imagens do experimento fosfoproteoma
durante a amastigogênese45
Figura 11. Mapa 2-DE alcalino da forma epimastigota53
Figura 12. Correlação entre a massa molecular experimental e teórica (A) e
correlação entre p/ experimental e teórico (B)55
Figura 13. Comparação 2-DE entre as formas de vida flageladas de T. cruzi
usando "gel dois-em-um" alcalinos56
Figura 14. Mapa 2-DE alcalino de tripomastigota
Figura 15. Mapa 2-DE alcalino de amastigota67
Figura 16. Zoom dos géis 2-DE da forma tripomastigota (T) e amastigotadas
(A). <i>Spots</i> diferencialmente expressos T>A74
Figura 17. Zoom dos géis 2-DE da forma tripomastigota (T) e amastigotadas
(A). <i>Spots</i> diferencialmente expressos T <a75< td=""></a75<>
Figura 18. Zoom dos géis 2-DE da forma tripomastigota (T) e amastigotadas
(A). Spots exclusivos de tripomastigota T76
Figura 19. Zoom dos géis 2-DE da forma tripomastigota (T) e amastigotadas
(A). Spots exclusivos de amastigota A77
Figura 20. Correlação entre a massa molecular experimental e teórica (A) e
correlação entre p <i>l</i> experimental e teórico (B)78
Figura 21. Funções das proteínas identificadas oriundos da análise
comparativa entre as formas tripomastigota e amastigota

Figura 22. Eletroforese bidimensional durante a amastigogênese no	s
diferentes tempos de coleta do parasito8	7
Figura 23. Spots protéicos ao longo dos tempos de coleta89	9
Figura 24. Correlação entre a massa molecular experimental e teórica (A)	е
correlação entre p/ experimental e teórico (B)92	2
Figura 25. Perfil 2-DE das fosfoproteínas referente ao tempo 0h93	3
Figura 26. Perfil 2-DE das fosfoproteínas referente ao tempo 1/2h94	4
Figura 27. Perfil 2-DE das fosfoproteínas referente ao tempo 1 h99	5
Figura 28. Perfil 2-DE das fosfoproteínas referente ao tempo 2 h90	6
Figura 29. Perfil 2-DE das fosfoproteínas referente ao tempo 4 h9	7
Figura 30. Perfil 2-DE das fosfoproteínas referente ao tempo no qua	J
completou a diferenciação (Tama)98	8
Figura 31. Média ± desvio padrão das porcentagens de volume dos spot	S
identificado em cada tempo de coleta11	1
Figura 32. Média ± desvio padrão das porcentagens de volume dos spots en	n
cada tempo de coleta112	2
Figura 33. Zoom dos spots que apresentaram diferença de expressão entre	е
os tempos de diferenciação113	3
Figura 34. Zoom dos spots que apresentaram diferença de expressão entre	е
os tempos de diferenciação114	4
Figura 35. Funções das proteínas fosforiladas identificadas durante	0
processo de amastigogênese11	5

Índice de tabelas

Tabela 1. Estratégias proteômicas por espectrometria de massa.
Tabela 2 Proteínas identificadas de T. cruzi e análise da expressão diferencial
entre as formas epimastigota e tripomastigota57
Tabela 3. Proteínas identificadas de T. cruzi e análise da expressão
diferencial entre as formas tripomastigota e amastigota
Tabela 4. Proteínas identificadas por MS/MS73
Tabela 5. Busca por similaridade via BLAST das proteínas hipotéticas
referentes a Tabela 380
Tabela 6. Distribução em porcentagem das formas tripomastigota e
amastigota presentes no meio de cultura ácido86
Tabela 7. Número de spots fosforilados detectados em cada um dos
experimentos revelados com ProQ Diamonds, com suas respectivas médias
e desvio padrão88
Tabela 8. Número de spots fosforilados exclusivos de cada um dos tempos
analisados90
Tabela 9. Proteínas identificadas por PMF e/ou MSMS nos diferentes tempos
de diferenciação99
Tabela 10. Evento de fosforilação/desfosforilação das proteínas identificadas
ao longo da diferenciação, com suas respectivas funções propostas 106
Tabela 11. Comparação da expressão protéica nos diferentes tempos de
coleta do parasito110

Abreviaturas

- 2-DE. eletroforese bidimensional
- ACN. acetonitrila
- ASP. proteína de superfície de amastigota
- ATP. trifosfato de adenosina
- BLAST. Basic Local Alignment Search Tool
- BZ. benzonidazol
- CID. dissociação induzida por colisão

CYTED. Programa Ibero-Americano para Desenvolvimento da Ciência

e Tecnologia

Da. dalton

- DALY. anos de vida perdidos por incapacidade
- DEM. meio Eagle modificado Dulbecco
- DNA. ácido desoxirribonucléico
- **DTT.** ditiotreitol
- EST. expressed sequence tags
- EDTA. ácido etilenodiamino tetraacético
- gp. glicoproteína
- GPI. glifosilfosfatidilinositol
- GTP. trifosfato de guanosina
- HILIC. cromatografia líquida de alta eficiência de interação hidrofílica
- ICAT. marcação de afinidade por isótopo
- **IEF.** focalização isoelétrica
- **IMAC.** cromatografia de afinidade imobilizada por metal
- IPG. gradiente imobilizado de pH

LC-MSMS. cromatografia multidimensional acoplada a espectrometria de massa

LIT. triptose de infusão de fígado

MALDI-TOF MS. espectrometria de massa por desorção e ionização a *laser* auxiliada por matriz

MASP. serino protease associada a lectina ligante de manose

mRNA. RNA mensageiro

MM. massa molecular

MS. espectrometria de massa

m/z. razão massa carga

MUDPIT. tecnologia multidimensional para identificação de proteínas

NADPH. nicotinamida adenina dinucleotídeo fosfato

NCBI. National Center for Biotechnology Information

OMS. Organização Mundial de Saúde

PAGE. eletroforese em gel de poliacrilamida

PBS. solução salina tamponada por fosfato

pH. potencial hidrogeniônico

pl. ponto isoelétrico

PMF. impressão digital do mapa peptídico

PSD. decaimento pós-fonte

RNA. ácido ribonucléico

SBF. soro fetal bovino

SCX. trocador forte de cátions

SDS. dodecil sulfato de sódio

SILAC. marcação com isótopos estáveis por aminoácidos em cultura celular

SL. seqüência líder

SMW. . lavagem da matriz de amostras

TCA. ácido tricloroacético

TFA. ácido trifluoroácético

TOF. tempo de vôo

Tris. tris-hidroximetilaminoetano

TSB. tampão salino Tris

V. volt

Resumo

O agente etiológico da doença de Chagas é o protozoário flagelado Trypanosoma cruzi. A regulação da expressão gênica em T. cruzi dá-se principalmente ao nível pós-transcricional o que dificulta a correlação direta entre os níveis de mRNA e proteínas e torna atrativa a abordagem proteômica. Estudos teóricos anteriores predisseram uma distribuição bimodal entre as faixas ácidas e básicas de géis bidimensionais virtuais de tripanossomatídeos. Contudo, trabalhos experimentais com T. cruzi tem gerado perfis 2-DE com uma distribuição assimétrica e poucos spots protéicos na região alcalina. Com o objetivo de verificar se as diferenças entre os perfis reais e virtuais eram resultado de limitações técnicas das metodologias atuais de 2-DE em faixas básicas de pH, foram feitas análises proteômicas das formas de vida do T. cruzi utilizando-se condições otimizadas para a faixa de pH 6-11. Assim, os subproteomas alcalinos das formas tripomastigota e epimastigota foram comparados usando-se a metodologia de "gel dois-em-um" ("two-in one gel") a qual, por minimizar as variações inerentes a 2-DE, facilitou a análise computacional de imagens. Um segundo estudo, concentrou-se na comparação das formas tripomastigota e amastigota, também utilizando uma estratégia de 2-DE-MS. Os resultados revelaram diferenças na expressão de proteínas entre as formas adaptativas do parasito, de acordo com suas características biológicas e corroboraram estudos proteômicos anteriores. Por exemplo, as enzimas relacionadas ao metabolismo de aminoácidos e desidrogenases foram mais abundantes na forma epimastigota, enquanto que *trans*-sialidases e proteínas paraflagelares foram encontradas especificamente na forma tripomastigota

Sabendo-se que o fenômeno de fosforilação/desfosforilação de proteínas está implicado na diferenciação do *T. cruzi*, procedeu-se o estudo da variação do fosfoproteoma do parasito durante a amastigogênese pela detecção direta das proteínas fosforiladas em géis 2-DE. Assim, verificou-se que várias proteínas apresentaram variação de fosforilação ao longo da amastigogênese, principalmente aquelas associadas ao citoesqueleto, envolvidas no enovelamento protéico e com funções metabólicas.

Abstract

The etiological agent of Chagas disease is the flagellate protozoan *Trypanosoma cruzi*. The fact that *T. cruzi* gene expression regulation occurs mainly at post transcriptional level prevents the direct correlation between mRNA and protein levels, and makes the proteomic approach very attractive. Previous theoretical studies predicted a bimodal distribution among acid and alkaline pH ranges in virtual 2-DE gels of trypanosomatides. On the other hand, 2-DE experiments on T. cruzi have generated assimetric profiles with very few spots on the alkaline region of the gel.

Aiming at verifying whether the differences between real and virtual profiles were due to the technical imitations of current 2-DE methodologies in the basic pH range, we carried out proteome analysis of *T. cruzi* life stages using conditions optimized for the 6-11 pH range. Therefore, trypomastigote and epimastigote alkaline subproteomes were compared using the "two-in-one gel" methodology which, by minimizing inherent 2-DE limitations, facilitated computational image analysis. A separate study focused on the comparison between trypomastigote and amastigote life stages also using a 2-DE-MS approach. Overall, the results revealed differences in protein expression between the adaptative forms of the parasite, in agreement with their biological traits, as well as corroborated previous proteomic studies. For instance, enzymes related with aminoacid metabolism and dehydrogenases were more abundant in the epimastigote stages while trans-sialidases and paraflagellar proteins were specifically found in trypomastigote 2-DE profiles.

Since phosphorylation/dephosphorylation is implicated in *T. cruzi* differentiation, we followed variations of *T. cruzi* phosphoproteome during amastigogenesis through direct phosphoprotein detection in 2-DE gels. Thus, we verified that several proteins presented variation in phosphorylation profiles during amastigogenesis, specially those proteins associated wih cytoskeleton, involved in protein folding and those with metabolic functions.

1. Introdução

1.1. Doença de Chagas

1.1.1. Breve Histórico

Em 1909, o médico sanitarista, Carlos Chagas (1878-1934) comunicou ao mundo científico a descoberta de uma nova doença humana. Chagas conseguiu um feito único na história da medicina, pois em poucos meses descreveu o parasito causador da doença, os vetores (insetos hematófagos comumente conhecidos como "barbeiros"), o ciclo de vida do parasito e vários aspectos epidemiológicos, clínicos e sociais relacionados a doença (Bestetti *et al.*, 2009).

A descoberta de Carlos Chagas foi um avanço no campo da pesquisa biológica devido a descoberta simultânea de uma nova doença, seu agente causal e o inseto transmissor. Devido a essa façanha, o médico sanitarista, foi amplamente reconhecido no Brasil e no exterior (Moncayo, 2009). O parasito hemoflagelado descoberto por Chagas, recebeu o nome de *Trypanosoma cruzi*, em homenagem a seu mentor Oswaldo Cruz.

A doença de Chagas incapacita anualmente 667 mil pessoas, sendo um dos principais problemas sociais encontrados na América Latina. A Organização Mundial de Saúde (OMS) expressa esse panorama pelo indicador chamado de anos de vida perdidos por incapacidade (DALY), que é uma medida de anos de vida saudáveis perdidos por um indivíduo que contraiu uma doença (morbidade e mortalidade) (WHO, 2010).

Em 2009, foi celebrado o centenário da descoberta da doença de Chagas; apesar dos importantes avanços no conhecimento de vários aspectos da doença ainda não se chegou a uma vacina que previna a doença nem a um tratamento eficaz para a fase crônica da doença. As drogas existentes até agora são: nifurtimox e benzonidazol. Essas drogas matam o parasito presente no ser humano, sendo mais eficaz na fase aguda (que muitas vezes passa sem ser percebida) e geram fortes efeitos colaterais (Dias *et al.*, 2009).

1.1.2. Epidemiologia

A distribuição geográfica da doença de Chagas, incluindo seus reservatórios e vetores, pode ser observada na figura 1. Atualmente, estimativas indicam que 100 milhões de pessoas encontram-se em áreas de risco sendo que 12-14 milhões de pessoas encontram-se infectadas na América Latina. Ocorrem aproximadamente 41 mil novos casos por ano e cerca de 14 mil pessoas morrem em decorrência da doença (DNDi, 2010).

Essa doença pode ser considerada uma antropozoonose resultante das alterações produzidas pelo ser humano no meio ambiente e das desigualdades econômicas. Segundo Vinhaes & Dias (2000), o *T. cruzi* vivia restrito ao ambiente silvestre, circulando entre mamíferos. O homem, ao invadir esses ecótopos, incluiu-se no ciclo epidemiológico da doença, oferecendo abrigos propícios à instalação do inseto vetor, como por exemplo, casas de pau-a-pique (barro e madeira) e lugares de criação de animais, como galinheiros e currais.

1.1.3 Vias de transmissão

O *T. cruzi* é transmitido para o hospedeiro humano pelas fezes ou urina de insetos triatomíneos hematófagos, conhecidos popularmente como "barbeiros". A transmissão da doença também pode ocorrer por transmissão congênita, por transfusão de sangue, transplante de órgãos a partir de doadores chagásicos ou por acidentes em laboratórios (WHO, 2009).

Recentemente ocorreram surtos de doença de Chagas com a forma aguda e morte por ingestão de formas tripomastigotas dissolvidas em bebidas, como suco de cana e açaí, em que os insetos vetores, silvestres provavelmente, foram triturados durante o preparo ou suas fezes contaminaram o alimento (Saúde, 2010).

1.1.4. Desenvolvimento da doença

A doença humana apresenta duas fases sintomáticas (aguda e crônica) e uma fase assintomática (indeterminada). Na fase aguda os parasitos multiplicam-se no local da infecção, disseminam-se para os tecidos e começam a se localizar nos órgãos. Essa fase geralmente ocorre de 6-8 semanas após a infecção. Uma das características clínicas dessa doença é o sinal de Romaña (edema bipalpebral unilateral) (Figura 2), nessa fase aparecem também os sinais gerais de infecção. A fase aguda é responsável pela morte de aproximadamente 10 % dos casos por insuficiência cardíaca decorrente de miocardite aguda ou meningoencefalite aguda (Souza, 2000).

Na fase indeterminada ocorre o aumento da resposta imune e diminuição da parasitemia. A fase indeterminada ocorre por vários anos até décadas sendo que os sinais clínicos e sintomas desaparecem e as pessoas se tornam soropositivas (Souza, 2000).

A fase crônica afeta órgãos internos principalmente o coração, o esôfago, o cólon e o sistema nervoso periférico. Dois mecanismos são propostos para a patogenicidade da fase crônica da doença: a inflamação crônica e auto-imunidade. As manifestações clínicas da fase crônica ocorrem

anos após a infecção podendo ser fatal se não tiver tratamento, 25% das pessoas desenvolvem sintomas cardíacos, pequena porcentagem desenvolve problemas no trato digestório e raramente há sintomatologia no sistema nervoso periférico. (Souza, 2000).

Figura 2. Sinal de Romaña (edema bipalpebral unilateral) (Fonte: <u>http://www.who.int/tdr/diseases/chagas/diseaseinfo.htm</u>).

1.1.5. Ciclo de vida

O ciclo de vida do *T. cruzi* (Figura 3) ocorre dentro do inseto vetor hematófago e do hospedeiro mamífero. Durante seu ciclo de vida, o parasito se diferencia em quatro estágios: epimastigota e tripomastigota metacíclico no inseto vetor, e tripomastigota sanguíneo e amastigota dentro do hospedeiro mamífero.

Os parasitos diferenciam-se pela primeira vez no estômago do inseto vetor onde as formas tripomastigotas transformam-se em epimastigotas poucas horas após sua ingestão. A segunda diferenciação do parasito ocorre quando os epimastigotas transformam-se em tripomastigotas metacíclicos no tubo digestivo do vetor. Os tripomastigotas metacíclicos são liberados por meio das fezes e urina do hospedeiro invertebrado atingindo o hospedeiro vertebrado por uma escoriação na pele ou por meio da mucosa. Os parasitos invadem diferentes tipos de células no hospedeiro, rapidamente se diferenciam em amastigotas, sofrendo várias divisões no interior das células infectadas. Em seguida, os amastigotas se diferenciam em tripomastigotas, que são liberados para o sangue após o rompimento da membrana celular,

iniciando o próximo ciclo de infecção de outras células ou ciclo biológico do parasito quando ingerido pelo inseto vetor (Garcia & De Azambuja, 2000).

Figura 3. Ciclo de transmissão do *Trypanosoma cruzi* (simplificado). Fonte: Infográfico: Venício Ribeiro,ICICT/Fiocruz.

1.2. Diferenciação em *T. cruzi*

A diferenciação das formas epimastigotas em tripomastigotas metacíclicos (metaciclogênese) ocorre naturalmente no intestino do inseto vetor provavelmente como uma resposta deste parasito às mudanças ambientais, tal como a redução de nutrientes disponíveis. Os mecanismos envolvidos no disparo deste processo, que é orientado por notáveis mudanças expressão gênica, permanecem desconhecidos. na А metaciclogênese em T. cruzi pode ser mimetizada in vitro, em condições químicas definidas, permitindo a seleção de parasitos em vários estágios de diferenciação (Yamada-Ogatta et al., 2004). Esse processo de diferenciação envolve a transformação de uma forma replicativa não infectante do parasito em uma forma infectante não replicativa. As mudanças funcionais e morfológicas que ocorrem durante o processo de metaciclogênese resultam de importantes mudanças na expressão diferencial dos genes (Yamada-Ogatta et al., 2004).

Poucos genes estágio-específicos da metaciclogênese de T. cruzi são conhecidos e descritos e a maioria que é conhecida codifica antígenos de superfície (Avila et al., 2003). Os autores identificaram alguns desses genes, como por exemplo, os genes que codificam as metaciclinas I e II que foram encontradas na forma tripomastigota mas não em epimastigota. Um outro exemplo seria o gene que codifica a metaciclogenina encontrado apenas na forma epimastigota. 0 estudo de genes estágio-específicos da metaciclogênese ajuda no entendimento da patologia da doença de Chagas e pode conduzir a uma compreensão melhor dos mecanismos que controlam sua expressão.

A primeira amastigogênese do ciclo de vida do parasito ocorre quando o tripomastigota metacíclico se transforma em amastigota dentro da célula do hospedeiro mamífero, enquanto o segundo processo é observado quando tripomastigotas derivados de tecido se diferenciam em amastigotas (Contreras *et al.*, 2002). A maior parte da informação a respeito do processo de amastigogênese vem do estudo da forma tripomastigota derivada de

tecido, sendo ainda pouco conhecido o processo de desenvolvimento que direciona a forma metacíclica na forma amastigota (Navarro *et al.*, 2003).

1.3. Metabolismo de *T. cruzi*

O metabolismo energético de *T. cruzi* depende principalmente das fontes de carbono existentes em seu hospedeiro. Assim, as formas tripomastigotas do parasito utilizam principalmente a glicose, que é abundante nos fluidos de seus hospedeiros vertebrados; enquanto as formas epimastigotas obtêm sua energia preferencialmente dos aminoácidos, que são constituintes de hemolinfa e fluidos dos tecidos do inseto vetor. Já as formas amastigotas, por residirem no citoplasma das células do hospedeiro tem acesso a carboidratos fosforilados e estão adaptados a um metabolismo energético baseado em glicose (Bringaud *et al.*, 2006).

Há diferenças consideráveis entre as células dos mamíferos e de tripanossomatídeos a nível bioquímico, sendo assim, espera-se que diversas proteínas desses parasitos sejam suficientemente diferentes daquelas do hospedeiro. Dessa forma, essas proteínas podem virar alvos para o desenvolvimento de drogas (Sing *et al.*, 2004).

A maioria dos eucariotos possuem todas as enzimas relacionadas com o metabolismo glicolítico no citosol, já nos tripanossomatídeos as sete primeiras enzimas envolvidas na glicólise encontram-se compartimentalizadas dentro de organelas chamadas glicossomos (Opperdoes, 1987; Hannaert et al., 2003). Esse fato explica a rapidez com que a glicólise ocorre nesses parasitos (Clayton & Michels, 1996) e esse fato possibilitou o estudo das enzimas participantes como potenciais alvos no desenvolvimento drogas terapêuticas no de novas combate aos tripanossomatídeos (Michels, 1988).

Uma forma de eliminar o parasito é inibindo a triosefosfato isomerase e a gliceraldeído-3-fosfato desidrogenase na via glicolítica (Helfert *et al.*, 2001) (Duszenko & Mecke, 1986). Outros alvos promissores são o transportador de glicose, seguido pela aldolase, fosfoglicerato cinase e glicerol-3-fosfato desidrogenase (Bakker *et al.*, 2000). Uma outra maneira do parasito degradar glicose é por meio da via das pentose-fosfato, a qual converte glicose 6-

fosfato à ribose 6-fosfato. Essa via sintetiza também o NADPH, o qual atua na defesa contra o estresse oxidativo e detoxificação de xenobióticos (Docampo & Moreno, 1986). A perda da atividade da enzima 6-fosfogluconato desidrogenase afeta a sobrevivência do parasito, o que torna essa enzima uma candidata ao desenvolvimento de uma terapia contra a doença (Barrett & Gilbert, 2002).

O *T. cruzi* também é um grande consumidor de aminoácidos, os quais são utilizados para a diferenciação das formas adaptativas e produção de ATP. Tonelli e colaboradores (2004) demonstraram que a prolina serve de carbono na diferenciação das formas intracelulares epimastigota-like em formas tripomastigotas. Alguns estudos demonstram que a prolina pode ser convertida em piruvato, α -cetoglutarato (via glutamato) e fumarato (via arginina), moléculas que são intermediários no ciclo do ácido tricarboxílico, além de piruvato. A prolina também pode ser convertida nos aminoácidos glutamato e aspartato (Sylvester & Krassner, 1976). Estudos anteriores mostraram a presença de uma mistura racêmica dos isômeros L- e D- prolina em todas as formas de vida de T. cruzi. A enzima responsável da interconversão dos enantiômeros apresenta atividade mitogênica em linfócitos B, tornando-a um importante alvo terapêutico (Reina-San-Martin et al., 2000). Outras enzimas presentes no metabolismo de aminoácidos podem ser usadas como alvos quimioterápicos, como por exemplo, a arginina cinase (Berriman *et al.*, 2005).

Dois aminoácidos, a arginina e a ornitina, são precursores para biossíntese de poliaminas que são essenciais para o crescimento e diferenciação da célula, e para a síntese de tripanotiona. Devido à tripanotiona ser um intermediário crítico no metabolismo dos tripanossomatídeos e ser ausente no hospedeiro, inibidores desta enzima podem constituir agentes anti-*T. cruzi* muito promissores (de Castro, 1993).

Tripanossomatídeos, assim como os fungos, sintetizam ergosterol, que é um componente da membrana celular semelhante ao colesterol das células animais. O ergosterol é fundamental para o crescimento e sobrevivência do parasito, sendo inibido por agentes antifúngicos específicos (Urbina, 1997).

1.4. Regulação da expressão gênica em T. cruzi

Os tripanossomatídeos apresentam mecanismos genéticos peculiares, tais como, a organização dos genes codificadores de proteínas em unidades transcricionais policistrônicas, o processamento dos transcritos por transsplicing e da editoração do RNA. Os mRNAs dos tripanossomatídeos apresentam, na extremidade 5', uma següência extremamente conservada de 39 nucleotídeos denominada seqüência líder (SL) ou mini-exon. A SL é adicionada ao mRNA por meio de um mecanismo de trans-splicing. Trata-se de uma reação intermolecular da qual participam uma molécula doadora (RNA da seqüência líder) e um aceptor, que é o mRNA que está sendo sintetizado. A reação envolve a clivagem das duas espécies de RNAs e transferência da SL para o mRNA. A reação de trans-splicing é catalisada por um complexo multienzimático constituído por enzimas específicas e ribonucleases. A SL é derivada de um RNA de 110 nucleotídeos codificado por genes localizados em um ou dois cromossomos, dependendo da cepa de T. cruzi. O RNA da SL é clivado e uma porção de 39 nucleotídeos resultante da clivagem é transferida para a região 5' do mRNA nascente. A região 5' do pré-mRNA é clivada em um sítio específico (consenso AG) e substituída pela SL. Como os RNAs mensageiro e da SL são codificados por genes situados em diferentes sítios do genoma, o processo foi denominado de trans-splicing (Silveira, 2000; Landfear, 2003).

А ausência de seqüências promotoras consenso nos tripanossomatídeos sugere que o controle da expressão gênica nos tripanossomas ocorre principalmente a nível pós-transcricional e envolve o processamento e tradução dos transcritos. A SL está teoricamente presente em todos os mRNAs do tripanossoma. A função exata da SL ainda não é conhecida. No entanto, há evidências de que a SL confere a estabilidade ao mRNA, impedindo a sua degradação, e auxilia também na interação do mRNA com os ribossomos. Transcritos que não apresentam SL perdem a sua estabilidade e não são traduzidos. Tal como ocorre nos eucariontes superiores, os mRNAs dos tripanossomas apresentam na sua extremidade 3' uma cauda composta por cerca de 30 resíduos de adenina (cauda poli A). Porém, ao contrário dos eucariontes superiores, os mRNAs dos tripanossomatídeos não apresentam uma seqüência consenso para a adição de resíduos de adenina. Sabe-se que a adição de SL e da cauda poli A ocorre durante a transcrição do mRNA mas ainda existe uma certa controvérsia com relação à hierarquia desses eventos (Silveira, 2000).

1.5. Expressão de proteínas estágio específicas de T. cruzi

O estudo de genes estágio-específico dos tripanossomatídeos fornece informações sobre as diferentes formas de vida e da interação do parasito com o hospedeiro. Além disso, esses estudos podem proporcionar importantes ferramentas para desvendar os mecanismos envolvidos na regulação da expressão gênica. O T. cruzi regula a expressão de proteínas de maneira pós transcricional por meio de variações na estabilidade do mRNA ou da eficiência da tradução dos mRNAs (Clayton, 2002). A expressão de proteínas varia nos diferentes estágios de desenvolvimento do T. cruzi. Por exemplo, epimastigotas apresentam a proteína gp 72 cuja função está envolvida na adesão flagelo-corpo basal (Harth et al., 1992). Em tripomastigotas metacíclicos são encontradas proteínas de adesão e invasão celular, tais como, a gp 82, gp 90 e gp 35/50 (Teixeira M. M. & Yoshida, 1986; Harth et al., 1989; Ramirez et al., 1993). Em tripomastigotas sanguíneos são encontradas trans-sialidases, cuja função é transferir unidades de ácido siálico de substratos exógenos para proteínas de membrana do parasito com o intuito de facilitar a adesão e penetração do parasito na célula hospedeira além de ajudar a proteger o parasito recém-eclodido da ação de anticorpos naturais (Frevert et al., 1992). Nessa forma de vida também são encontrados epitopos sialilados em suas superfícies, como o Ssp3. capazes de inibir a adesão e a penetração do parasito na célula do hospedeiro (Schenkman et al., 1992). Por outro lado, em amastigotas encontram-se a amastina (Teixeira S. M. et al., 1994), o epitopo Ssp 4 (Burleigh & Andrews, 1995) e ASP que são membros das superfamília sialidases (Low & Tarleton, 1997).

1.6. Genômica de *T. cruzi*

A análise genética de *T. cruzi* é uma tarefa laboriosa, pois não há condensação cromossômica durante a divisão celular. O *T. cruzi* apresenta um genoma diplóide, e se reproduz assexuadamente (Silveira, 2000).

O genoma nuclear de *T. cruzi* pode ser agrupado em três classes: a) seqüências que codificam proteínas, b) seqüências que codificam RNAs e c) seqüências repetitivas, as quais não são codificadoras (Silveira, 2000).

O projeto genoma de T. cruzi começou oficialmente em 1994 em dois fóruns científicos independentes: CYTED – Programa Ibero-Americano para Desenvolvimento da Ciência e Tecnologia financiado pelo governo espanhol, e OMS - Organização Mundial de Saúde (Ferrari et al., 1997; Zingales et al., 1997). Após mais de 10 anos, os resultados do sequenciamento do genoma de T. cruzi publicado em 2005 (El-Sayed et al., 2005a), mostraram que o T. cruzi apresenta um genoma diplóide com cerca de 22.570 proteínas codificadas por genes dos quais 12.570 representam pares alélicos. Mais de 50 % do genoma do parasito consiste de següências repetidas, tais como, retrotransposons de genes da grande família das moléculas de superfícies, os quais incluem trans-sialidases, mucinas, gp 63s e as proteínas de superfície associadas a mucinas (MASP). Várias classes de moléculas importantes da via de sinalização celular não se encontram em tripanossomatídeos, incluindo receptores transmembrânicos, proteína G heterotrimérica, a maior parte dos receptores catalíticos, domíneos SH2 e SH3 e fatores que regulam a transcrição. Alguns receptores catalíticos foram encontrados e todos são adenilato ciclases (El-Sayed et al., 2005a).

A elucidação da seqüência completa do genoma de *T. cruzi* não é suficiente para definir os processos dinâmicos relacionados à expressão de proteínas. Assim, estudos pós-genômicos visando elucidar a expressão diferencial de proteínas em diferentes condições, incluindo as metodologias proteômicas e as de DNA *microarray* tornaram-se uma conseqüência natural do seqüenciamento do genoma. Deve-se relembrar que a regulação gênica em *T. cruzi* não se dá a nível transcricional. A regulação da expressão ocorre, portanto, por meio do controle da estabilidade e/ou da tradução específica dos mRNAs (Vanhamme & Pays, 1995). Esse fato limita o uso de DNA

microarrays e torna a abordagem proteômica bastante atrativa para descrever as mudanças globais na expressão protéica global durante o ciclo de vida do *T. cruzi*.

Com base no estudo genômico, definiu-se que o táxon *T. cruzi* contém dois grupos distintos, baseados em marcadores polimórficos *T. cruzi I* e *T. cruzi II. T. cruzi* I está associado com o ciclo de transmissão silvestre e infecção de marsupiais (Clark & Taylor, 1994). O grupo *T. cruzi II* é formado por cinco subgrupos, denominados IIa, IIb, IIc, IId e IIe (Brisse *et al.*, 2000), que são associados com o ciclo de transmissão doméstico e infecção em mamíferos (Briones *et al.*, 1999).

1.7. Proteômica de *T. cruzi*

O termo proteoma foi cunhado em 1994 por Marc Wilkins e refere-se ao conjunto de proteínas expressas pelo genoma de um organismo ou, no caso de organismos multicelulares, ao complemento protéico expresso por um tecido ou células diferenciadas (Wilkins *et al.*, 1996). Mais recentemente proteoma foi definido como a expressão protéica de um genoma em uma amostra biológica em um dado momento, independente se sua origem é celular, tecidual ou fluida (Aebersold & Goodlett, 2001). O objetivo bioquímico do proteoma é o produto gênico responsável pelo fenótipo (Cuervo *et al.*, 2010).

As primeiras análises proteômicas tinham como objetivo a identificação em larga escala de todas as proteínas presentes em uma célula ou em um tecido. No entanto, o proteoma de um determinado organismo permite saber se e quando um produto genético está sendo expresso, a concentração relativa desse produto e, por fim, as modificações que podem ocorrer nessas proteínas após a sua tradução. A análise proteômica pode mostrar como esses processos metabólicos, regulatórios e de sinalização se tornam disfuncionais nos estados patológicos e como podem ser manipulados, mediante, por exemplo, a administração de medicamentos ou a terapia gênica (Anderson *et al.*, 2000). O *T. cruzi* precisa se adaptar a rápidas mudanças fisiológicas devido aos diferentes ambientes encontrados em seus hospedeiros, esse fato sugere expressão diferencial de diversos genes envolvidos na interação parasito-hospedeiro (Cuervo *et al.*, 2010). Além disso, sabe-se que o *T. cruzi*, assim como outros tripanossomatídeos, regula a expressão de proteínas póstranscricionalmente por meio de variações na estabilidade ou na eficiência de tradução dos mRNAs. Por essa razão, várias abordagens proteômicas tem se mostrado úteis na análise dessas mudanças de expressão protéica dos parasitos durante seus ciclos de vida (Clayton, 2002).

O primeiro estudo da análise proteômica comparativa entre as formas evolutivas do T. cruzi foi realizado por pesquisadores da Universidade de Brasília e, utilizou uma estratégia baseada na combinação de eletroforese bidimensional, e espectrometria de massa (2-DE-MS) (Paba et al., 2004b). Os resultados mostraram que grande parte das proteínas identificadas apresentava expressão conservativa entre as formas evolutivas epimastigota, tripomastigota e amastigota. Entretanto, o número de proteínas focalizadas no gel e o número de identificações obtidas representaram uma pequena parte de todo o proteoma de cada forma evolutiva (Paba et al., 2004b). Parodi-Talice e colaboradores também em 2004, identificaram 45 proteínas presentes em epimastigota usando a abordagem proteômica baseada em 2-DE-MS. Nessa mesma época, realizou-se uma análise quantitativa das proteínas das formas tripomastigota e amastigota, empregando marcadores isotópicos (ICAT), seguido por cromatografia líquida acoplada à espectrometria de massa. Assim, 41 proteínas foram identificadas com nível de expressão determinada, sendo a maioria delas pertencentes a proteínas de organização celular, metabolismo e proteínas de destinação (Paba et al., 2004a).

Em 2005, foi publicado um outro artigo sobre a análise proteômica de *T. cruzi* usando cromatografia multidimensional acoplada a espectrometria de massa (LC-MS/MS) (Atwood *et al.*, 2005). Proteínas das formas tripomastigotas metacíclicas, amastigotas, tripomastigotas e epimastigotas do parasito foram analisadas. Foram identificadas 2784 proteínas, e desse total 1008 correspondentes as seqüências gênicas anotadas como hipotéticas (Atwood *et al.*, 2005).

A estratégia de 2-DE-MS foi também empregada para estudar a metaciclogênese (Parodi-Talice *et al.*, 2007). Nesse trabalho os autores analisaram as seguinte condições: epimastigotas, diferenciação em epimastigota nos tempos 3 e 24 horas, e tripomastigota metacíclico. Após a obtenção do mapa proteômico da forma epimastigota metacíclico, foram analisadas a expressão de 43 proteínas nas outras condições. Glutamato desidrogenase apresentou um aumento de expressão (8 vezes maior) em 24h de diferenciação, α - e β -tubulina, assim como, as enzimas envolvidas na reação redox tiol-dissulfeto foram superexpressas na forma metacíclica. Os autores também identificaram várias isoformas das proteínas identificadas, o que sugere modificações pós-traducionais (Parodi-Talice *et al.*, 2007).

A diversidade de proteínas presente nos diversos tipos celulares aliada a grande diferença de concentração entre as mesmas, dificulta sobremaneira a representação completa do proteoma em um gel bidimensional. Uma forma de contornar este problema é trabalhar com o subproteoma. Além das análises de proteomas totais, proteomas subcelulares passaram a ser objeto de estudo. A importância da proteína não depende exclusivamente da quantidade de expressão, mas muitas vezes do local onde é expressa. O proteoma subcelular permite identificar proteínas importantes para a sobrevivência do parasito e/ou infectividade que são expressas em pequenas concentrações. Alguns compartimentos especializados encontrados dentro da célula do parasito são fundamentais para sua sobrevivência, dentre essas estruturas podemos citar: acidocalcisoma, uma organela envolvida com a homesostase do cálcio, homeostase do pH intracelular e osmoregulação (Porto-Carreiro et al., 2000) e os reservomas, que são as principais organelas de armazenamento do parasito (Porto-Carreiro et al., 2000; Cunha-e-Silva N. et al., 2006). Ferella e colaboradores (2008) usaram 1DE e 2DE seguido por nano LC–MS/MS para analisar a fração subcelular enriquecida principalmente por acidocalcisomas e glicossomas juntamente com outras organelas da forma epimastigota de T. cruzi. Foram identificadas 396 proteínas, sendo que desse total 138 foram proteínas classificadas como hipotéticas.

Um outro estudo subcelular de *T. cruzi* foi realizado por Sant'Anna e sua equipe (2009). Os autores utilizaram a metodologia desenvolvida por Cunha-e-Silva e colaboradores (2002) para purificar e enriquecer a fração do

reservossoma. As amostras foram analisadas por microscopia eletrônica de transmissão a fim de confirmar a pureza e preservação das características morfológicas do reservoma e da membrana do reservoma. Em seguida, foi realizada a análise por LC-MS/MS para obter o proteoma do reservoma da forma epimastigota de T. cruzi. Foram identificadas 709 proteínas de T. cruzi, sendo 456 proteínas com funções conhecidas e 253 classificadas como hipotéticas ou de função desconhecida (Sant'Anna et al., 2009). Algumas proteínas anteriormente descritas presentes em reservomas foram identificadas, tais como, cruzipaína, serina carboxipeptidase, proteínas transportadoras ABC (ATP-binding cassette), e proteína tirosina fosfatase (Soares et al., 1992; Cunha-e-Silva N. L. et al., 2002; Parussini et al., 2003; Torres et al., 2004; Cuevas et al., 2005; Sant'Anna et al., 2008). Algumas das proteínas identificadas confirmaram o papel do reservosomas na síntese de lipídeos (Cunha-e-Silva N. L. et al., 2002; Sant'Anna et al., 2009). Os autores também identificaram proteínas transmembranares da membrana plasmática, confirmando a relação entre a membrana plasmática e reservossomas; e componentes do citoesqueleto, que são essenciais para o tráfico vesicular e posicionamento da organela intracelular.

Os glicoconjugados da superfície de protozoários patogênicos apresentam um domínio carboidrato com estruturas incomuns. Esse fato sugere uma relação específica entre carboidratos e a virulência do parasito. O *T. cruzi* é recoberto por um glicocálice cujos componentes estão envolvidos em sua sobrevivência e infectividade (Previato *et al.*, 2010). Devido a importância desses glicoconjugados, foi realizada uma análise proteômica subcelular das frações ricas em âncoras de GPI e de outras proteínas de membranas da forma epimastigota e tripomastigota metacíclica. Essas amostras foram analisadas por 2D-LC–MS/MS, o qual permitiu identificar 98 proteínas da forma tripomastigota metacíclica e 280 proteínas da forma epimastigota (Cordero *et al.*, 2009).

Uma das vantagens da análise proteômica, além do estudo do nível de expressão gênica em condições específicas, é a identificação de proteínas que sofrem modificações pós-traducionais, pois essas não são detectadas por análise do genoma (Sodré *et al.*, 2010). Algumas modificações pós-traducionais, tais como, acetilação, metilação, fosforilação e deamidação

foram identificadas em alguns peptídeos de T. cruzi (Atwood et al., 2005). A análise do glicoproteoma da forma tripomastigota do parasito foi realizada por Atwood et. al. (2006). As proteínas glicosiladas pertencentes as membranas das organelas e do plasma foram separadas por uma coluna de afinidade com lectina, posteriomente essas proteínas sofreram marcação isotópica e foram analisadas por LC-MS/MS. Trinta e seis sítios N- glicosilações de 29 glicoproteínas foram identificados, incluindo as superfamílias de mucinas associadas à superfície (Atwood et al., 2006). Recentemente, com o propósito de se obter informações sobre as redes de sinalização de T. cruzi, Nakayasu e sua equipe (2009a) conduziram a análise proteômica do fosfoproteoma da forma epimastigota de T. cruzi. Após a digestão tríptica, as amostras foram fracionadas por cromatografia SCX e os fosfopeptídeos enriquecidos por cromatografia do tipo IMAC. A análise dos peptídeos foi executada por LC-MS/MS, identificando 237 fosfopeptídeos de 119 proteínas distintas e mapeado 220 sítios de fosforilação, incluindo 148 serinas, 57 treoninas e 8 tirosinas. As tirosinas fosforiladas foram validadas por imunoprecipitação e western blot usando um anticorpo anti-tirosina (Nakayasu et al., 2009a). Esse grupo publicou também na mesma época a primeira análise proteômica em larga escala de âncoras de GPI da forma epimastigota de T. cruzi, o qual foi batizado de GPIomics (Nakayasu et al., 2009b).

Além do que já foi mencionado anteriormente, a análise proteômica possibilita o entendimento das interações parasito-hospedeiro, marcadores de virulência, antígenos para diagnósticos, e também possíveis alvos terapêuticos. Com o objetivo de esclarecer o papel do estresse oxidativo/nitrosativo presente na doença de Chagas, Dhiman *et al.* (2008) usaram tecnologias proteômicas para estudar a proteína-3-nitrotirosina (3NT) no plasma de animais infectados por *T. cruzi.* Os autores observaram que a indução dos mediadores inflamatórios está associada a aumento substancial na nitração de proteínas no coração e no plasma de pacientes chagásicos. Membros das famílias das imunoglobulinas, incluindo as cadeias leves de IgG e IgA, cadeias pesadas IgG- γ , - γ 2a, e - γ 3, e IgH-6 bem como isoformas de apolipoproteínas estavam entre os 56 *spots* de proteínas nitradas identificadas no plasma dos chagásicos. A quantidade de nitração das

imunoglobulinas foi significativamente maior nos camundongos que apresentavam a fase aguda da doença do que nos camundongos da fase crônica da doença, sendo que esses níveis eram de duas a seis vezes maior em camundongos infectados do que no grupo controle, isto é, nos camundongos livres de infecção (Dhiman *et al.*, 2008).

A cardiopatia crônica causada pela doença de chagas (CCC) é uma complicação tardia muitas vezes fatal da infecção pelo *T. cr*uzi, com um prognóstico pior do que outras cardiomiopatias. Para obter um melhor entendimento da fisiopatologia da CCC, Teixeira e colaboradores (2006) analisaram o perfil protéico do miocárdio de pacientes afetados. Usando 2-DE e MALDI-MS, os autores catalogaram várias proteínas, incluindo proteínas estruturais, metabólicas e com função de resposta ao estresse. Em outro estudo realizado por esse grupo em 2008, utilizou-se *hamsters* como modelo de infecção pelo parasito. O objetivo do trabalho era investigar se miocardite, seus mediadores e expressão protéica do miocárdio estavam relacionados com a gravidade da fase aguda da infecção por *T. cruzi* (Bilate *et al.*, 2008).

Recentemente, foi demonstrado que a análise proteômica também pode ser usado para a compreensão da resistência do parasito a drogas. Andrade et al. (2008) relataram a primeira análise proteômica da resistência do T. cruzi ao benzonidazol (BZ). Nesse estudo, foram selecionadas cepas de T. cruzi resistentes e suscetíveis ao BZ, e em seguida analisadas por 2-DE e MALDI-MS/MS. Foram identificadas trinta e seis proteínas exclusivas da cepa resistente ao BZ, nove proteínas exclusivas da cepa suscetível e onze proteínas presentes nos dois tipos. Entre as proteínas que foram mais expressas na cepa resistente ao BZ encontram-se proteínas involvidas na transcrição e proteínas de localização, tais como, uma cisteíno peptidase calpaína-símile, proteínas hipotéticas conservadas de 26 kDa, peptidase putativa, peroxiredoxina e tirosina amino transferase, ciclofilina A, dentre outras. Apenas a proteína prostaglandina F 2α sintase apresentou expressão mais alta na cepa suscetível (Andrade H. M. et al., 2008). Os autores também sugerem que diversos mecanismos podem estar envolvidos na produção da indução, seleção ou resistência natural a drogas em T. cruzi.

1.8. Fosfoproteômica

As modificações pós-traducionais são consideradas um dos mais importantes determinantes na complexidade dos organismos. Uma das modificações pós-traducionais mais estudadas é a fosforilação (Raggiaschi *et al.*, 2005). A fosforilação de proteínas está envolvida em vários processos celulares, tais como, na regulação transcrição gênica, no ciclo celular, na divisão celular e proliferação, na diferenciação celular, na morfologia celular, no armazenamento de energia e na apoptose. O tipo mais comum de fosforilação é O-fosforilação que pode ocorrer nos aminoácidos serina, treonina e tirosina, com uma proporção cerca de respectivamente 1000/100/1 (Hunter, 1998). Além desse tipo de fosforilação, outros aminoácidos também podem ser fosforilados, como no caso de histidina, arginina, lisina que são N-fosforiladas, aspartato e glutamato podem apresentar acil-fosforilação e cisteína que pode ser S-fosforiladas (Sickmann & Meyer, 2001).

Ao conjunto das proteínas fosforiladas de um determinado organismo chama-se fosfoproteoma. A aplicação das técnicas proteômicas à análise do fosfoproteoma permite o estudo de todas as proteínas fosforiladas de uma célula ao mesmo tempo ao invés de estudar uma única proteína.

O uso de isótopos de fosfato inorgânico P³² ou P³³ é provavelmente o método mais antigo para o estudo de proteínas fosforiladas. Esse método é usado até hoje, pois é simples e confiável para o estudo de eventos de fosforilação *in vitro* e em modelos celulares. O modo mais fácil de analisar o fosfoproteoma de uma célula, tecido ou organismo, é com o uso de marcadores isotópicos os quais detectam seletivamente fosfoproteínas diretamente em géis SDS-PAGE. Essa metodologia pode ser resumida da seguinte maneira: as proteínas são marcadas com fosfato inorgânico radioativo seguido de *lise* celular e depois separadas por eletroforese (uni)bidimensional e visualizadas por autoradiografia ou por um especial de cintilação denominado *phosphorimaging* (Raggiaschi *et al.*, 2005).

A sensibilidade da detecção de fosfoproteínas em gel é diretamente proporcional ao número de sítios fosforilados da proteína (Raggiaschi *et al.*, 2005). Para obter uma análise abrangente do fosfoproteoma é preciso que a

solução reveladora seja compatível com as técnicas de espectrometria de massa. Além disso, é preciso que a detecção de proteínas fosforiladas e proteínas totais possam ser feitas no mesmo gel e para isso os reagente que detectam fosfoproteínas precisam ser compatíveis com os reagentes que detectam as proteínas totais (Raggiaschi *et al.*, 2005).

O estudo do fosfoproteoma pode ser feito de uma maneira global, isto é, com as proteínas totais do lisado, ou por estratégias de enriquecimento. As estratégias de enriquecimento são técnicas usadas para separar apenas as proteínas que apresentem fosforilação e são essenciais para a elucidação e identificação de fosfoproteínas pouco expressas, tais como, moléculas sinalizadoras e receptores. Como ocorrem em outras técnicas proteômicas, a análise do fosfoproteoma apresenta dificuldades, tais como, a complexidade da amostra, a faixa dinâmica de concentração das proteínas e mudanças que podem ocorrer ao longo do tempo (Nita-Lazar *et al.*, 2008).

Uma das estratégias mais comuns para o enriquecimento de frações de proteínas fosforiladas para o estudo de fosfoproteomas é combinação de métodos de afinidade cromatográfica. Essas técnicas incluem: a SCX (*strong cation exchange*), cuja metodologia baseia-se no fato de que os grupamentos fosfato adicionam cargas negativas ao peptídeo, e dessa forma os peptídeos fosforilados são eluídos antes dos não fosforilados; a cromatografia IMAC que tem como base a afinidade de grupos fosfato a íons metálicos, como por exemplo o Fe³⁺ (Beausoleil *et al.*, 2004); a cromatografia HILIC (*hydrophilic interaction chromatography*) que também é baseada na forte hidrofilicidade do grupamento fosfato (McNulty & Annan, 2008). Da mesma forma que o estudo do fosfoproteoma das proteínas totais, a análise de frações enriquecidas de peptídios fosforilados fazem uso de metodologias de espectrometria de massa (Yates *et al.*, 2009).

Análise fosfoproteômica tem sido importante em diversas áreas de pesquisa, como por exemplo, na compreensão de redes de sinalização celular (Nita-Lazar *et al.*, 2008; White, 2008), efeito de drogas nas vias de sinalização celular (Tedford *et al.*, 2009), identificação de proteínas fosforiladas que são relacionadas com doenças, dentre outras.

Apesar da importância da fosforilação de proteínas em muitos processos celulares, poucos estudos foram realizados em
tripanossomatídeos. Um desses poucos estudos foi o estudo comparativo do cinoma, isto é, do conjunto de proteínas cinases do genoma dos tripanossomatídeos. Esse estudo mostrou que *T. brucei, T. cruzi* e *Leishmania major* apresentam respectivamente 176, 190 e 199 genes codificadores de proteínas cinases. Aproximadamente 12% desse total de proteínas cinases são exclusivas de tripanossomatídeos (Naula *et al.*, 2005; Parsons *et al.*, 2005). Já as proteínas fosfatases de *T. brucei, T. cruzi,* e *L. major* apresentaram respectivamente 78, 86, e 88 genes codificantes dentre os quais cerca de 40% não apresentam homologia em outros genomas (Brenchley *et al.*, 2007). As diferenças significativas dos genes codificantes de proteínas quinases e fosfatases dos tripanossomatídeos e das células hospedeiras sugerem que a inibição específica do parasito pode ser alcançado e, portanto, pode representar uma abordagem terapêutica viável para o controle das doenças (Doerig, 2004; Parsons *et al.*, 2005).

Recentemente, análise proteômica das formas promastigota e amastigota de *Leishmania donovani* proporcionou a identificação 73 fosfoproteínas com diversas funções biológicas, no entanto os sítos específicos de fosforilação (ou fosfosítios) não foram identificados (Morales *et al.*, 2008). Outro estudo proteômico de *L. donovani* identificou 18 fosfosítios de 16 fosfopeptídeos distintos (Rosenzweig *et al.*, 2008). Como anteriormente citado nesse trabalho (seção 1.6), o primeiro fosfoproteoma da forma epimastigota de *T. cruzi* foi realizado por Nakayasu *et. al.*(2009a). Em 2009 também foi realizado o fosfoproteoma da forma sanguínea de *T. brucei* com o uso de LC-MS/MS (Nett *et al.*, 2009).

1.8. Técnicas proteômicas

1.8.1. Eletroforese bidimensional

A eletroforese bidimensional consiste na separação de proteínas com base em duas de suas propriedades: numa primeira dimensão, de acordo com o seu ponto isoeléctrico (p*I*) e, numa segunda dimensão, de acordo com a sua massa molecular (M) (O'Farrell, 1975). A primeira dimensão consiste da focalização isoelétrica (IEF), onde as proteínas são desnaturadas com o objetivo de expor todas as cadeias laterais dos aminoácidos de suas sequências ao solvente. Görg *et al.* (1988) introduziu o uso de gradientes imobilizados de pH (IPG) na etapa de IEF, com o uso de tampões especiais que são co-polimerizados com acrilamida e bisacrilamida, acarretando uma melhor reprodutibilidade dos perfis bidimensionais.

Após a IEF, as proteínas são então introduzidas em um gel de poliacrilamida com gradiente de pH imobilizado e submetidas a uma corrente elétrica. De acordo com suas cargas residuais, elas se movimentam nesse gel em direção a um dos pólos da corrente e, chegando a uma região de pH que neutralize a sua carga residual, dizemos que foi alcançado o ponto isoelétrico (pl) dessas proteínas. Depois disso, as proteínas separadas na primeira dimensão são submetidas a um processo de redução e alquilação para que não haja riscos de formação de novas estruturas terciárias ou quaternárias por interação intra e intercadeia. Em seguida, todas as proteínas são carregadas negativamente com a adição do detergente aniônico, o dodecil sulfato de sódio (SDS) e submetidas a uma nova etapa eletroforética (segunda dimensão ou SDS-PAGE - eletroforese em gel de poliacrilamida). Sob efeito da corrente elétrica, as proteínas migram em direção ao pólo positivo. Para os spots de proteínas do gel bidimensional serem visualizadas, este é submetido a processos de coloração específicas (Berkelman & Stensted, 1998) (Figura 4).

Apesar de ser uma técnica poderosa a 2-DE apresenta limitações, sendo que as principais estão relacionadas à pouca representação de proteínas de alta massa molecular, a baixa resolução de proteínas hidrofóbicas e a dificuldade de visualizar proteínas existentes em número reduzido de cópias por células (Gygi & Aebersold, 2000). Existe também dificuldade de se obter padrões eletroforéticos reprodutíveis para proteínas com ponto isoelétrico muito alcalino (Hoving *et al.*, 2000). O pré-fracionamento da amostra (Gorg *et al.*, 2002; Locke *et al.*, 2002), a diminuição da concentração da malha dos IPGs (Candiano *et al.*, 2002; Bruschi *et al.*, 2003) assim como, a diminuição do efeito eletroendosmótico em géis alcalinos (Hoving *et al.*, 2002) têm abrandado significativamente essas restrições.

Em géis bidimensionais em regiões de pH alcalino é notável o aparecimento de longas listras horizontais (*streaking*), baixa resolução de *spots* e baixa reprodutibilidade. Os problemas de *streaking* são conseqüências do desaparecimento do agente redutor (normalmente o DTT) da parte básica do gel de gradiente imobilizado de pH (IPG *strip*) usado na etapa de focalização isoelétrica. Esse desaparecimento acarreta oxidação dos grupos tióis das proteínas resultando em pontes dissulfeto intra e

intercadeias. Outros efeitos deletéricos na resolução e reprodutibilidade incluem transporte ativo de água na direção do anodo (eletroendoosmose reversa) causada pelas fortes cargas positivas dos tampões básicos de acrilamida e a hidrólise da acrilamida em ácido acrílico em pHs alcalinos (Hoving *et al.*, 2002).

Uma boa resolução, isto é, melhor definição e aumento no número de *spots*, dos géis bidimensionais, permite uma melhor análise no estudo da expressão diferencial de proteínas. Para estudar proteínas básicas é necessário um tratamento diferente das amostras aplicadas em faixas amplas ou ácidas de pH. Um protocolo para a 2-DE de proteínas alcalinas de *T. cruzi* foi desenvolvido recentemente (Magalhães, 2006)

1.8.2. Estratégias proteômicas por espectrometria de massa

Existem dois tipos fundamentais de estratégias proteômicas por espectrometria de massa (MS). Na estratégia *bottom up*, proteínas purificadas ou misturas são submetidas a clivagem proteolítica e os peptídios gerados são analisados por MS. Na estratégia *top-down*, proteínas intactas são submetidos a fragmentação em fase gasosa para análise por MS. Uma comparação entre as duas estratégias está apresentada na Tabela 1.

Abordagem	Top Down	Bottom Up			
	Instrumentos de alta acurácia de massa	Grande variedade de instrumentos			
Drá roquisitos	LTQ-Orbitrap	Q-TOF, LIT, LTQ-Orbitrap, etc.			
Pre-requisitos	LIT-ICR	Amostra é digerida antes da análise			
	Grande quantidade de amostra				
	Alta cobertura de sequência	Obtenção de dados em grande escala			
	Informações de complexos proteína-proteína e PTM	Amostras muito complexas			
Vantagens	Identificação de várias PTM	Alta sensibilidade			
	Fragmentação branda com ECD e ETD	Boa separação front-end			
	Melhor quantificação	Derivatização química			
	Limitações do estado de carga do íon precursor	Faixa de massa estreita			
	Limitações de separação	Separação prévia (front-end) requerida			
Desvantagens	Baixa sensibilidade	Superamostragem de peptídios muito abundantes			
	Ambiguidade no estado de carga prejudica ID de ptn	Massa da ptn intacta não é acessível diretamente			
		Perda de PTMs lábeis			
	Caracterização de uma única proteína	Identificação de ntruvia análise pentídica			
Anlicações	Análise de proteoma				
Aplicações	Splicing alternativo	Quantificação de proteínas, análise de PTM			
	Múltiplas análises de PTM				
	Cromatografia de troca iônica	Baseado em géis			
Etanas próvias	Cromatografia RP	Gelfree			
(front-end)	2-DE	Cromatrografia RP			
0.010 0.007	Ionização ESI	Cromatografia de troca iônica			
	Infusão de amostra	Cromatografia de afinidade			
	FST	PMF			
Estratégia		Busca em banco de dados			
Lotiatesia	De novo	De novo			
		Busca em Bibliotecas			

Tabela 1. Estratégias proteômicas por espectrometria de massa^a. adaptada de (Yates *et al.*, 2009).

^aEST, *expressed sequence tag*; PTM, modificações pós-traducionais; RP, resina de fase reversa; ICR, *ion cyclotron resonance*; LIT, *linear ion trap*; ECD, *electron capture dissociation*; ETD, *electron transfer dissociation*; ESI, *electrospray ionization*; PMF, impressão do mapa peptídico; Q-TOF, *quadrupole time-of-flight*; ptn, proteína; ID, identificação.

1.8.2. Espectrometria de massa de proteínas e peptídeos

A eletroforese ou outras técnicas de separação de proteínas são insuficientes para assegurar uma identidade protéica de um determinado *spot* e por isso análises posteriores são imprescindíveis. A espectrometria de massa é uma técnica utilizada para determinar a razão massa/carga sendo fundamental nas ciências proteômicas. Um espectrômetro de massa consiste em três elementos básicos: fonte de íons, analisador de massa e detector de íons. De forma simplificada, o procedimento que ocorre no interior do equipamento consiste na conversão de moléculas do analito em íons na fase gasosa, separação destes, e suas detecções, nais quais são gerados um sinal conforme o número de eventos ou corrente elétrica criada (Cunha, 2003).

O método de ionização empregado nesse trabalho foi por desorção à laser auxiliada por matriz (MALDI) (Figura 5). Esse método consiste na mistura da amostra a uma matriz, que geralmente se trata de um composto que absorve luz no mesmo comprimento de onda do feixe de laser que será utilizado. Essa mistura ainda no estado líquido é aplicada sobre um anteparo onde é deixada até que o solvente evapore por completo e a matriz e a amostra cristalizem simultaneamente. O anteparo é então irradiado com um feixe de laser de forma que amostra e analito entram em fase gasosa e são direcionados para serem analisados dentro do espectrômetro de massas (Aebersold & Goodlett, 2001; Cunha, 2003). Após a ionização do analito, este é encaminhado para o analisador molecular onde cada fragmento peptídico será separado de acordo com a razão massa/carga (m/z) (Siuzdak, 1996). No presente trabalho fez-se o uso do analisador do tipo TOF (time-of-flight). Uma vez que o analito e a matriz ionizados e desorvidos entram no tubo de vácuo do aparelho, são acelerados por um campo elétrico até que cheguem a um detector que calculará a razão m/z de cada partícula de acordo com o tempo de voo da mesma (Siuzdak, 1996).

Figura 5. Processo de ionização por MALDI. Nesse método de ionização, os íons do analito são gerados por desorção dessas biomoléculas a partir de uma estrutura sólida que contém matriz e analito co-cristalizados (Andrade A. C., 2006).

Durante a análise por MS, uma lista de massas das partículas detectadas e um espectro contendo essas massas são gerados. A esses dados aplicam-se estratégias de identificação de proteínas. Uma das estratégias é a impressão digital do mapa peptídico (PMF) (Mann et al., 1993). Por este método a proteína (desconhecida) de interesse é primeiramente submetida à digestão proteolítica e os peptídios resultantes tem suas massas moleculares determinadas por MS. Sendo assim, para identificar a proteína de interesse, a lista de massas obtida é comparada a listas de massas gerada por digestões in silico das proteínas de um banco de dados usando softwares especiais 0 MASCOT como (http://www.matrixscience.com/) que geram listas de proteínas candidatas as quais se atribuem pontuações que dizem respeito à significância estatística do resultado (Figura 6).

Α

Probability Based Mowse Score

Protein score is -10*Log(P), where P is the probability that the observed match is a random event.

Figura 6. Resultado obtido em busca por PMF. Estão mostradas na parte superior da figura (A) três setas indicando que foi obtida uma pontuação significativa na busca e a proteína com uma lista de massas mais semelhante à da proteína do experimento realizado é a primeira da lista, mitochondrial RNA binding protein, com uma pontuação de 141, valor acima de 66 (mínimo significativo determinado pelo algoritmo). Em (B) está evidenciada a similaridade entre a lista de massas obtidas no experimento e a lista de massas teóricas gerada pela digestão in silico da proteína Adaptado de (Costa, 2009). Busca realizada com a ferramenta Mascot (Perkins et al., 1999).

A técnica PMF nem sempre é suficiente para a identificação de proteínas. A espectrometria de massas em série (*tandem mass spectrometry*, MS/MS) traz dados adicionais em relação a estratégia de PMF. Após a obtenção de um perfil geral de todos os peptídeos originados a partir da digestão da proteína, selecionam-se alguns peptídeos. Separadamente cada um sofrerá fragmentação – por colisão com um gás (*collision-induced dissociation*, CID) ou por decaimento por excesso de energia na molécula após ionização/desorção por MALDI (*post source decay*, PSD) – e um espectro de fragmentação é gerado (Jørgensen *et al.*, 1999). A partir dos espectros de fragmentação dos peptídios de uma mesma proteína e do espectro de PMF é realizada uma busca em banco de dados (Mann *et al.*, 1993).

As ferramentas de bioinformática são indispensáveis para a conclusão dos experimentos. De maneira geral, são plataformas de interface que geram, a partir de dados brutos, uma interpretação do que foi obtido. Podendo fazer parte de circuitos de transformação de dados matemáticos em dados visuais (espectros de massa), como também são importante para facilitar a comparação entre informações diversas – géis onde se buscam proteínas com expressões diferenciadas, espectros de massa de uma mesma amostra obtidos a partir de metodologias de preparação distintas, sequências protéicas correspondentes de um mesmo gene de diferentes organismos, interpretação de sequências de aminoácidos a partir de espectros de massa, dentre outros. O arsenal de técnicas e estratégias proteômicas continua em expansão podendo ter uma abordagem estrutural, funcional ou de expressão comparativa (Lau *et al.*, 2003).

2. Justificativa

O número de proteínas identificadas em trabalhos prévios de análise proteômica de *T. cruzi*, até o momento, foi relativamente pequeno quando comparado com os mais de 12.000 genes codificantes de proteínas sequenciados pelo parasito por genoma haplóide (El-Sayed *et al.*, 2005a). Esse trabalho tentou contribuir para a obtenção de um conhecimento mais abrangente do proteoma do *T. cruzi*, por meio do estudo das proteínas básicas e do fosfoproteoma durante a amastigogênese.

Géis bidimensionais virtuais de tripanossomatídeos apresentam uma distribuição bimodal entre as faixas ácidas e básicas. No entanto, esse fato não é observado em géis reais. O presente trabalho buscou verificar se as diferenças entre os perfis reais e virtuais eram resultado de limitações técnicas das metodologias atuais de 2-DE em faixas básicas de pH. Essa abordagem foi aqui empregada para comparar o proteoma de diferentes estágios de vida do parasito.

A diferenciação do tripomastigota, depois da invasão da célula hospedeira, em amastigota e o contrário a diferenciação de amastigota em tripomastigota liberado no corpo é um processo surpreendente. Estudos mostram que proteínas-alvo de fosforilação/desfosforilação participam na diferenciação do T. cruzi. Sabe-se que tripomastigotas expostos às drogas anti-fosfatases são muito sensíveis. Por exemplo, triposmastigotas submetidos a um tratamento com a caliculina A, inibidor de fosfatases, iniciam a diferenciação em amastigotas (Grellier et al., 1999). Por outro lado, o inibidor de fosfatases ácido ocadáico reprime a diferenciação dos tripomastigotas em amastigotas (Gonzalez et al., 2003). A fosforilação de proteínas constitui o maior tipo de modificação pós-traducional e é bem conhecida como tendo um papel-chave na regulação do ciclo celular e na transdução de sinal. É possivel estudar o conjunto de protéinas fosforiladas de um tipo celular a um momento determinado, ou fosfoproteoma, pela detecção direta delas em gel 2-DE (Laugesen et al., 2004; Jiang et al., 2005; Raggiaschi et al., 2005). O presente trabalho estudou a variação do fosofoproteoma de T. cruzi durante a amastigogênese.

Em ambos os casos, esperou-se revelar um grande número de proteínas e principalmente proteínas pouco expressas que não foram visualizados nos trabalhos anteriores.

As informações fornecidas a partir de subproteomas de *T. cruzi* podem contribuir para o conhecimento da biologia do parasito, incluindo as bases moleculares nos processos de diferenciação, de regulação da expressão gênica/protéica, de controle do seu ciclo celular, da sua virulência, assim como da descoberta de possíveis alvos de terapia que ofereçam à população infectada novas alternativas de tratamento.

3. Objetivos

3.1. Objetivo geral

- Estudar o proteoma do *Trypanosoma cruzi* com ênfase:
 - na análise comparativa das proteínas básicas entre as formas epimastigota, tripomastigota e amastigota, e
 - o na variação do fosfoproteoma durante a amastigogênese.

3.2. Objetivos específicos

- Análise subproteômica de proteínas básicas dos estágios adaptativos de *T. cruzi*:
 - Construção de mapas 2-DE das formas epimastigota, tripomastigota e amastigota
 - Análise proteômica comparativa das formas epimastigota com tripomastigota com uso da técnica "gel dois-em-um" e identificação de proteínas de interesse.
 - Análise proteômica comparativa das formas tripomastigota e amastigota usando estratégia 2-DE-MS e identificação proteínas estágio específicas e diferencialmente expressas.
- Análise das alterações do fosfoproteoma de *T. cruzi* durante o processo de amastigogênese.
- Correlação entre os níveis de expressão protéica com as características biológicas de cada estágio de vida do parasito.

4. Material e Métodos

4.1. Cultura e obtenção de parasitos

Todos os parasitos foram obtidos da linhagem Berenice. As formas epimastigotas foram obtidas por cultura em meio LIT (*liver infusion tryptose*) suplementado com 5% de soro bovino fetal (SBF) (Sorali Biotecnologia, Campo Grande, Brasil), incubados a 25 °C com agitação constante. As formas tripomastigotas foram coletadas a partir de cultura celular em fibroblastos (Andrews & Colli, 1982), mantidos em meio DMEM suplementado com SBF 5%, 100 µg/mL de gentamicina, 100 µg/mL de penicilina, a 37 °C em atmosfera contendo 5% CO₂. Amastigotas axênicos foram obtidos a partir de tripomastigotas incubados em meio DEM pH 5,0, durante 12 h a 37 °C, 5% CO₂ (Tomlinson *et al.*, 1995). Foram coletados os parasitos nos seguintes tempo de diferenciação de tripomastigota até amastigota: 0 h; $\frac{1}{2}$ h; 1 h; 2 h; 4 h e amastigota. A contagem dos parasitos foi realizada usando diluições crescentes em câmera de Neubauer.

4.2. Solubilização das proteínas

Para cada *pellet* $(1,8 \times 10^8 \text{ células})$ obtido por meio da extração dos parasitos durante a diferenciação de tripomastigota em amastigota no meio de cultura pH 5 foi adicionado 20 µL de 0,2 % (w/v) SDS. Em seguida, estes foram fervidos por 5 minutos e resfriadas por 1 minuto com o objetivo de quebrar as células e inativar as proteases (Paba *et al.*, 2004a). Um volume de 60 µL de tampão 2D (7,77 M uréia, 2,22 M tiouréia, 65 mM DTT, 2% Triton X-100 e 10 % isopropanol) contendo um coquetel de inibidores de proteases com EDTA (Roche, Mannheim, Germany) foi adicionado a amostra e estocado em seguida a -20 °C até o uso

4.3. Eletroforese bidimensional (2-DE)

A primeira dimensão dos géis básicos foi feita de acordo com Magalhães *et al.* (2006). As amostras foram aplicadas em *strips* de 18 cm com separação linear de pH 6-11 (GE Healthcare). Antes da focalização isoelétrica, a amostra contendo 500 µg de proteína foi diluída com tampão 2D

(7 M uréia, 2 M tiouréia, 0,5 % (v/v) IPG buffer 6-11, 85 mM DTT, 2,5 % (v/v) Triton X-100, 10 % (v/v) isopropanol e azul de bromofenol) até obter o volume final de 250 µl; em seguida, incubado sobre agitação por 1 hora e centrifugado a 12,000 × g, 10 min em temperatura ambiente. Após a focalização os strips foram submetidos à redução/alquilação por incubação consecutiva em 3 mL de DTT 125 mM e acrilamida 125mM em tampão equilíbrio (50 mM Tris-HCL pH 6,8, 6 M uréia, 30 % (v/v) glicerol, 1 % (w/v) SDS) (Mineki et al., 2002) durante 40 minutos. Antes da segunda dimensão os strips foram lavados com tampão corrida (25 mM Tris, 192 mM glycine, 0,1 % (w/v) SDS). A separação na segunda dimensão foi realizada por eletroforese desnaturante em gel de poliacrilamida (SDS-PAGE) 12 % T com o sistema Protean II (Bio-Rad, Hercules, CA, USA) a 20 °C. Para visualização das proteínas presentes nos géis, estes foram corados com nitrato de prata segundo o protocolo de Blum et al (1987). Os géis foram estocados com uma solução de 1 % (v/v) ácido acético em água antes da digestão tríptica de proteínas.

4.3.1. "Gel dois-em-um"

A metodologia "gel dois-em-um" foi usada na comparação entre as formas flageladas infectivas (tripomastigota) e não infectivas (epimastigota) de *T. cruzi*. Para esses géis foram aplicado 500 μ g de proteína em cada um dos *strips* de pH 6-11 usados no experimento. Após a IEF cada *strip* foi cortado ao meio resultando em duas metades correspondendo a pH 6-8,5 e pH 8,5-11 respectivamente. A primeira dimensão foi acoplada a segunda dimensão de acordo com o esquema mostrado na figura 7. Os géis "Dois-emum" foram corados com nitrato de prata (Blum *et al.*, 1987) e estocados em 1 % (v/v) ácido acético.

Figura 7. Esquema ilustrando o "gel dois-em-um" (modificado de Wang *et al.*,2003).

4.4. Detecção de fosfoproteínas

Para detectar fosfoproteínas foi usado o *Kit Pro-Q Diamond Phosphoprotein Gel Stain* (Molecular Probes, OR, EUA). Os géis foram fixados *overnight* com uma solução de fixação (50% (v/v) metanol, 10% (v/v) ácido acético) a temperatura ambiente sob agitação suave. No dia seguinte, os géis foram incubados com uma segunda solução de fixação por 30 minutos. Em seguida, os géis foram lavados por 10 minutos três vezes com água Milli Q (Millipore) e marcados com a solução *Pro-Q Diamond Phosphoprotein Gel Stain* por 2 horas no escuro. Logo após, para eliminar o ruído fluorescente, os géis foram descorados por três vezes de 30 minutos cada vez com uma solução descorante (20 % (v/v) acetonitrila, 50 mM acetato de sódio, pH 4,0). Os géis, após serem descorados, foram lavados com água *Milli Q* (Millipore,) e digitalizados com um escaner *Typhoon 9200* (GE Healthcare, QC, Canadá), utilizando o comprimento de onda de excitação de 532 nm e filtro de emissão 560 nm.

4.5. Análises de imagens

Géis corados com prata foram escaneados (PowerLook 1120, Amersham Biosciences) com uma resolução de 300 dpi. Imagens digitalizadas foram importadas via *software ImageMaster 2D Platinum 6.0* (GE Healthcare) para análise. A primeira parte da análise de imagens incide na detecção dos *spots*. Com o intuito de homogeneizar essa detecção usouse os mesmos parâmetros para todos os géis. A detecção do *spot* consiste em três parâmetros: *smooth*, saliência e mínima área. *Smooth* ajuda a definir o que é *spot* e o que é artefato, a saliência indica a altura do *spot* e a mínima área seleciona a menor área que pode ser considerada um *spot* e não ruído (como por exemplo, partículas de poeira, que apresentam boa saliência e *smooth*, mas têm uma área muito pequena para ser considerada *spot*). Os valores usados para a detecção dos géis foram: *smooth* 2, mínima área 5 e saliência 1.0. A etapa seguinte a detecção é o pareamento, que consitiu numa sobreposição virtual dos géis, e os *spot*s que apresentaram a mesma localização, isto é, as mesmas coordenadas X e Y foram considerados iguais.

A análise de imagens do experimento "gel dois-em-um" foi realizada de acordo com o esquema mostrado na figura 8. Primeiramente, o "gel dois-emum" foi cortado virtualmente separando os experimentos, no caso epimastigoto (E) de tripomastigoto (T). Logo em seguida, foi realizado o pareamento entre cada experimento. Finalmente, foi calculada a razão E/T também em cada experimento, seguindo do cálculo da média entre as razões.

A análise de imagens do experimento entre as formas de vida presente no hospedeito vertebrado (tripomastigota/amastigota), foi realizado de acordo com a figura 9. Realizou-se o pareamento entre as triplicatas (intra classe) em cada uma das formas, obtendo-se assim o gel mais representativo de cada forma (*master*). Em seguida, fez-se o pareamento entre o *master* T e o *master* A (inter classe).

Figura 8. Fluxograma da análise de imagens do experimento "gel dois-emum" entre as formas epimastigotas (E) e tripomastigota (T).

Figura 9. Fluxograma da análise de imagens do experimento tripomastigota (T)/amastigota (A) básico.

As imagens das fosfoproteínas foram adquiridas com o formato *.gel* e transformadas em *.tiff* por meio do programa *Adobe Photoshop CS 2*[®] para Windows. Essa mudança de extensão foi necessária para o reconhecimento do *software ImageMaster 2D Platinum 6.0* (GE Healthcare), onde foi realizada a análise das imagens. Os valores usados para a detecção dos géis foram: *smooth* 3, mínima área 50 e saliência 80.0.

A análise de imagens do fosfoproteoma durante a amastigogênese consistiu primeiramente no pareamento entre as duplicatas de cada tempo (intra classe). O pareamento inter classe usou gel referência para que fosse pareado com os outros tempos (Figura 10). Para obter os *spots* exclusivos de cada tempo foi realizado o pareamento "ao contrário", que consite em trocar a

ordem do gel referência. Cada um dos tempos foi colocado como gel referência e analisado contra o gel 0h.

Figura 10. Fluxograma da análise de imagens do experimento fosfoproteoma durante a amastigogênese.

4.6. Análises estatísticas

Com o objetivo de obter valores normalizados foi usado para os testes estatísticos a porcentagem de volume (%V) do *spot.* A porcentagem de volume fornece valores normalizados porque permanecem relativamente independentes das variações entre as imagens. Os *softwares* SPSS® versão 13 e Excel® para Windows® foram utilizados em todas as análises estatísticas. O nível de significância estatística foi estabelecido em p≤0,05 (bicaudal) para os testes envolvendo comparação entre formas de vida (seção 5) e p≤0,10 (bi-caudal) para a análise do fosfoproteoma durante a amastigogênese (seção 6) devido ao número reduzido de replicações deste experimento (duplicata).

4.6.1. Comparação entre as formas epimastigostas e tripomastigotas com o uso da técnica "gel dois-em-um"

A razão entre os volumes dos spots pareados de epimastigotas e tripomastigotas (E/T) foi calculada para cada "gel dois-em-um" da triplicata. Logo, se o valor da razão E/T for igual a 1 indicaria que a proteína é igualmente expressa em ambos os estágios. A razão E/T varia entre 0 e 1 quando o valor de tripomastigotas é maior, e entre 1 e ∞ quando o valor de epimastigota é maior.

Foi realizado o teste *Shapiro-Wilk* (1965) e foi observado que a distribuição dos dados correspondia a uma distribuição normal. Para determinar se houve uma expressão diferencial foi aplicado o teste *t* para uma amostra (valor de teste=1) à média da razão E/T (três géis) de cada *spot*.

4.6.2. Proteômica comparativa entre as formas tripomastigota e amastigota na região alcalina de pH

Com o intuito de garantir a reprodutibilidade dos resultados, nesta análise foram utilizados unicamente os *spots* que estiveram presentes nos três géis de cada forma de vida (n=T(3) + A(3)). A média do valor de cada *spot* foi comparada entre as duas formas de vida mediante o teste *t* para amostras independentes. Esta análise determinou se a expressão da proteína foi diferenciada entre as mesmas. Finalmente, foram calculadas as médias dos *spot*s que apareceram nos três géis de uma forma de vida e não na outra (n=T(3) + A(0); ou T(0) + A(3)). Estes valores indicaram que a expressão da proteína correspondente foi exclusiva da forma tripomastigota ou amastigota. Vale lembrar que os *spots* foram submetidos ao teste *Shapiro-Wilk* (1965) para observar se a distribuição dos dados correspondia a uma distribuição normal.

4.6.3. Análise do fosfoproteoma

Na análise da expressão de proteínas fosforiladas foram utilizados os valores de cada *spot* mensurados no tempo escolhido de diferenciação de tripomastigota até amastigota (0h, ½h, 1h, 2h, 4h e amastigota). A maior parte dos *spots* (36,4%) esteve presente nos seis tempos avaliados. O restante dos *spots* apareceram em 5, 4, 3, 2 ou só um dos tempos avaliados. Foram desenvolvidas análises estatísticas separadas segundo o número de vezes que o *spot* foi detectado.

Quando o *spot* apareceu de seis a três vezes a ANOVA de medidas repetidas foi realizada para a comparação das médias de porcentagem de volume entre os tempos. Nos casos em que o *spot* foi detectado só em dois tempos, o método de análise foi o teste t-pareado (para amostras dependentes). Desta forma, foi possível identificar diferenças e semelhanças no nível de expressão nos diferentes tempos de diferenciação.

Nos casos em que o *spot* apareceu unicamente em um dos tempos, sua média foi calculada e a expressão desta proteína foi considerada exclusiva.

4.7. Identificação de proteínas - PMF e MS/MS.

Spots foram excisados do gel, descorados, digeridos com tripsina (Promega, Madison, USA) e extraídos como previamente descrito (Paba *et al.*, 2004b). As amostras foram aplicadas de acordo com o protocolo *Sample Matrix Wash* (SMW) segundo Zhang, *et al* (2007) usando uma placa chamada *Anchorchip*TM (Bruker Daltonics) ou aplicadas diretamente na placa de aço

convencional do espectrômetro de massa, para isso as amostras foram concentradas e dessalinizadas por microcoluna de fase reversa *ZipTip* C₁₈ (Millipore, MA, USA), e em seguida eluidas com a solução de matriz (20 mg/ml ácido α -ciano-4-hidroxicinamico em 0,1 % (v/v) TFA, 50 % (v/v) acetonitrila).

As análises foram realizadas nos espectrômetros MALDI-TOF modelo Reflex IV (Bruker Daltonics, Karlsruhe, Germany) e/ou MALDI autoflex II TOF-TOF (Bruker Daltonics, Karlsruhe, Germany).

Os espectros para análise por PMF foram obtidos em modo positivo, refletor e extração retardada. Cada espectro foi calibrado internamente e editados manualmente usando os programas FlexAnalysis e Biotools (Bruker Daltonics). As buscas foram realizadas por meio do programa MASCOT (http://:www.matrixscience.com), usando o banco de dados não redundante do NCBI. Os parâmetros de busca foram: tolerância de desvio de massa molecular (50-100 ppm), restrição de massa molecular de acordo à observada na separação eletroforética, organismos eucariotos, máximo de um sítio tríptico de corte não clivado, propionamidação como modificação variável. Para o experimento de fosfoproteoma, além dessas modificações, foi acrescentado como modificação variável a fosforilação.

Os *spots* que não foram identificados por PMF foram submetidos à análise por MS/MS. Essa análise consistiu em selecionar o peptídeo mais intenso e fragmentá-lo usando o método LIFT (Bruker Daltonics), com 400 tiros, 10 % limite de sinal ruído e 50 de fator de qualidade. O espectro resultante da fragmentação foi analisado usando o programa *FlexAnalysis* e *Biotools* (Bruker Daltonics, Karlsruhe, Germany), usando os mesmos parâmetros do PMF.

Resultados e discussões

5. Análise do subproteoma de proteínas básicas de *T. cruzi*

5.1. Construção de 2-DE alcalinos e comparação entre epimastigotas e tripomastigotas

5.1.1. Construção de 2-DE alcalino para a forma epimastigota de T. cruzi

Perfis bidimensionais em faixa ampla de pH têm mostrado uma maior concentração de proteínas na região ácida, apresentando poucos spots na região básica e listras horizontais ao longo do gel (Paba et al., 2004b; Parodi-Talice et al., 2004). No entanto, foi demonstrado teoricamente para diversos organismos, que a distribuição de p/ de proteínas em proteomas totais é bimodal (Medjahed et al., 2003; Weiller et al., 2004). Géis bidimensionais virtuais (plotado por meio do p/ e MM teóricos) foram construídos para os proteomas dos protozoário Leishmania major e T. brucei, que pertencem à mesma família (Trypanosomatidae) е ordem (Kinetoplastidae) que o T. cruzi (El-Sayed et al., 2005b). Esses géis bidimensionais virtuais apresentaram essa característica bimodal, isto é, teoricamente possuíam a mesma quantidade de proteínas ácidas e básicas (Kiraga et al., 2007). Dessa forma, pode-se inferir que o gel virtual de T. cruzi também apresente essa mesma característica bimodal e que a não observação deste tipo de distribuição em géis reais seja devido a dificuldades técnicas inerentes das metodologias atuais de 2-DE em faixas básicas de pH.

Nesse trabalho, foram estudadas as proteínas básicas de *T. cruzi* e para isso utilizou-se o protocolo previamente estabelecido (Magalhães, 2006). A partir desse protocolo, construiu-se o mapa bidimensional alcalino da forma epimastigota de *T. cruzi* na faixa de pH 6-11 em gel SDS-PAGE 12% (Figura 11). Proteínas *landmarks* foram escolhidas e submetidas à digestão tríptica seguida de análise por PMF. Os *spots* identificados encontram-se na Tabela 2. A maioria das proteínas identificadas corresponde a enzimas metabólicas, especialmente aquelas relacionadas ao metabolismo de aminoácidos. Também foram identificadas proteínas de choque térmico, pequenas proteínas ligantes de GTP e ciclofilina A.

52

Figura 11. Mapa 2-DE alcalino da forma epimastigota. As proteínas (500 μ g) foram separadas na faixa de pH 6-11 seguido de SDS-PAGE 12%. *Spots* numerados correspondem a proteínas identificadas por PMF presentes na Tabela 2. O gel foi corado com nitrato de prata

Foi verificado que a correlação estatística entre os valores teóricos e experimentais de massas moleculares (Pearson r=0,984, P<0,001) foi maior que a correlação entre os valores de p*I* (Pearson r=0,852, P<0,001) (Figura 12). Sabe-se que a baixa correlação entre os valores teóricos e experimentais de pl pode ser devida a ocorrência de modificações pós-traducionais (PTMs) (Halligan *et al.*, 2004; Charneau *et al.*, 2007). Cuervo e colaboradores (2007) observaram discrepâncias entre os valores de p*I* teóricos e experimentais no tripanossomatídeo *Leishmania major* e demostraram que a principal causa dessa variação é a ocorrência de modificações pós-traducionais, principalmente por acetilação, piroglutamilação do N-terminal, processamento N-terminal da metionina, deamidação e oxidação do triptofano. Estudos anteriores do proteoma de *T. cruzi* mostraram a presença de isoformas, o que

corrobora a existência de modificações pós-traducionais (Paba *et al.*, 2004b; Parodi-Talice *et al.*, 2007).

5.1.2. Análise comparativa entre as formas epimastigota e tripomastigota usando a técnica do "gel dois-em-um"

O protocolo otimizado para géis 2-DE da região alcalina foi utilizado na comparação entre a expressão de proteínas das formas flageladas infectiva (tripomastigota) e não infectiva (epimastigota) de *T. cruzi*. Em conjunto com o protocolo otimizado usou-se a metodologia "gel dois-em-um" descrita por Wang *et. al.* (2003). A vantagem da técnica "gel dois-em-um" é a diminuição das variações inerentes ao SDS-PAGE. Nesse método as amostras a serem comparadas são primeiramente submetidas a uma IEF e os géis de IPG são posteriormente cortados em duas partes. Em seguida, as metades de gel contendo a mesma faixa de pH são aplicadas lado a lado na etapa de SDS-PAGE (segunda dimensão) (Wang *et al.*, 2003). Dessa forma, as duas metades de gel de IPG a serem comparadas são submetidas a mesmas condições SDS-PAGE e coloração o que facilita sobremaneira a posterior análise da expressão diferencial das proteínas.

A figura 13 mostra o "gel dois-em-um" da comparação entre as formas epimastigota e amastigota em duas faixas de pH. A maior parte dos *spots* encontra-se na parte mais ácida do gel, isto é, na faixa entre pH 6-8,5 (Figura 13A). O "gel dois-em-um" facilitou a análise computacional das imagens entre as formas de vida do parasito. Além dos *spots* identificados anteriormente no mapa bidimensional de epimastigota (Figura 11), três *spots* exclusivos de tripomastigotos foram identificados por PMF (*spots* 30,31 e 32). A expressão relativa das proteínas de *T. cruzi* foi calculada por meio da razão entre as porcentagens de volume entre epimastigota/tripomastigota (E/T). A razão E/T foi calculada para cada um dos géis da triplicata. O teste de *Shapiro-Wilk* (1965) confirmou que os dados apresentavam uma distribuição normal. A média desta razão foi comparada com o valor 1 utilizando o teste t para uma amostra (Tabela 2).

Figura 12. Correlação entre a massa molecular experimental e teórica (A) e correlação entre p*I* experimental e teórico (B). Os valores foram obtidos a partir do gel pH 6-11, SDS-PAGE 12% de epimastigota. Os valores da correlação foram: *Pearson* r = 0.984, P < 0.001 para Mr e *Pearson* r = 0.852, P < 0.001 para os valores de p*I*.

Figura 13. Comparação 2-DE entre as formas de vida flageladas de *T. cruzi* usando "gel dois-em-um" alcalinos. IPG *strips* 6-11 contendo amostras de epimastigota (E) e tripomastigota (T) foram cortados e aplicados lado a lado em gel SDS-PAGE 12%. **A:** "gel dois-em-um" de faixa pH 6–8.5. *Spot* 29 é mostrado na parte (**B**) em um experimento a parte. **C**: "gel dois-em-um" de faixa pH 8.5–11. O gel foi corado com nitrato de prata.

Spotª	Proteína	No. acesso (NCBI)	MASCOT		ММ	p/				
			Seq. Cov (%) ^b	Score ^c	– Exp (Teo) ^d	Exp (Teo) ^d	Expressão	E/T (SEM) ^h	ť	p-valor ^j
1	Alanine aminotransferase	gi 71660439	16	76	55.7 (55.1)	6.2 (6.1)	Ee	-	-	-
2	Citrate synthase	gi 71660323	13	76	53.6 (53.1)	8.0 (8.6)	E <t<sup>g</t<sup>	0.35±0.09	-7.144	0.019
3	Dehydrogenase	gi 61741948	35	116	43.5 (42.4)	6.0 (6.1)	E ^e	-	-	-
4	Dehydrogenase	gi 61741944	29	81	43.9 (42.6)	6.2 (6.0)	E ^e	-	-	-
5	D-isomer specific 2-hidroxyacid dehydrogenase	gi 71420052	32	82	46.1 (38.8)	6.4 (6.0)	E>T ^g	3.81±0.10	27.755	0.001
6	Cystathionine beta-synthase	gi 71425069	30	81	43.2 (42.8)	6.6 (6.4)	E <t<sup>g</t<sup>	0.24±0.03	-24.786	0.002
7	2-amino-3-ketobutyrate coenzyme A ligase	gi 71650629	29	87	44.3 (44.0)	7.2 (6.7)	E=T ^f	2.58±0.55	2.897	0.101
8	Aspartate aminotransferase, mitochondrial	g 71412236	22	87	43.3 (46.5)	7.7 (8.6)	E=T ^f	1.00±0.21	0.015	0.989
9	Arginine kinase	gi 71407949	23	76	41.8 (40.5)	6.1 (6.3)	E=T ^f	0.84±0.10	-1.544	0.262
10	D-isomer specific 2-hidroxyacid dehydrogenase	gi 71420052	47	140	42.0 (38.8)	6.4 (6.4)	E=T ^f	5.97±2.45	2.027	0.180
11	D-isomer specific 2-hidroxyacid dehydrogenase	gi 71420052	42	99	41.9 (38.8)	6.6 (6.0)	E=T ^f	1.77±0.39	1.962	0.189
12	L-threonine 3-dehydrogenase	gi 71406160	29	103	40.5 (37.3)	6.9 (6.7)	E>T ^g	9.64±1.65	5228	0.035

 Tabela 2
 Proteínas identificadas de T. cruzi e análise da expressão diferencial entre as formas epimastigota e tripomastigota

	Proteína	No. acesso (NCBI)	MASCOT		MM p/				
Spot ^ª			Seq. Cov (%) ^b	Score ^c	- Exp (Teo) ^d	Exp (Teo) ^d	Expressão	E/T (SEM) ^h	ť
13	Succinyl CoA synthetase alpha subunit	gi 71667777	29	81	40.9 (32.3)	7.8 (8.4)	E=T ^f	0.91±0.05	-1.762
14	Mitochondrial malate dehydrogenase	gi 71414199	47	114	38.3 (31.9)	8.1 (7.6)	E=T ^f	1.27±0.13	2.022
15	Mitochondrial malate dehydrogenase	gi 71414199	38	106	38.3 (31.9)	8.5 (7.6)	E=T ^f	1.43*	-
16	Pyridoxal kinase	gi 71413338	19	76	33.1 (33.6)	6.0 (6.0)	E=T ^f	4.10±1.03	2.996
17	Tryparedoxin peroxidase	gi 17224953	44	101	27.8 (22.7)	6.3 (6.0)	E=T ^f	1.60±0.51	1.173
18	Small GTP-binding protein	gi 71413249	30	76	26.2 (22.0)	7.2 (7.0)	E=T ^f	1.16±0.34	0.479
19	Chain B, triosephosphate isomerase	gi 4389145	26	123	30.0 (27.4)	8.3 (8.6)	E=T ^f	0.64±0.10	-3.543
20	Hypothetical protein	gi\71414910	51	111	25.6 (21.5)	6.3 (6.9)	E ^e	-	-
21	Peptide methionine sulfoxide reductase	gi 71405176	60	110	22.7 (20.2)	6.3 (6.1)	E=T ^f	4.10±1.02	3.040
22	Cyclophilin A	gi 71659715	34	85	21.1 (19.0)	7.8 (8.4)	E=T ^f	3.20±1.52	1.448
23	Cyclophilin A	g 71659715	37	82	20.8 (19.0)	8.4 (8.4)	E=T ^f	1.28±0.28	0.994
		No acesso	MASCOT		ММ	p/			d
-------------------	---------------------------------	-------------	------------------------------	--------------------	------------------------	------------------------	------------------	------------------------	-------
Spot ^ª	Proteína	(NCBI)	Seq. Cov (%) ^b	Score ^c	Exp (Teo) ^d	Exp (Teo) ^d	Expressão	E/T (SEM) ^h	ť
24	Cyclophilin A	gi\71659715	41	80	19.3 (19.0)	8.6 (8.4)	E=T ^f	1.28±0.26	1.071
25	Calpain-like cystein peptidase	gi 71407848	51	97	17.1 (15.1)	6.6 (6.4)	E ^e	-	-
26	nucleoside diphosphate kinase	gi 71667532	54	94	17.3 (17.0)	8.5 (8.5)	E=T ^d	3.75±2.04	1.346
27	20 kDa heat shock protein	gi\71418782	42	78	16.6 (16.0)	7.8 (7.8)	Ee	-	-
28	Hypothetical protein	gi\71407758	52	104	16.0 (13.0)	7.7 (7.8)	Ee	-	-
29	10 kDa heat shock protein	gi 71410853	49	78	14.8 (10.7)	6.4 (8.0)	E=T ^f	1.67±0.39	1.729
30	69 kDa Paraflagelar rod protein	gi 71650963	16	80	71.0(70.1)	6.0 (5.9)	Te	-	-
31	Trans-sialidase	gi 71409133	11	88	75.0 (81.4)	7.0 (8.4)	Te	-	-
32	Hypothetical protein	gi 71651158	47	87	13.1(16.4)	9.6 (9.0)	Te	-	-

^aSpot, número corresponde a proteínas identificadas indicado nas figuras 11 e 13.

^bPorcentagem da cobertura de seqüência predita por peptídeos pareados via Mascot

^cProbabilidade (Mowse Score) do software Mascot

^dMM e p*l* teórica calculada a partir da sequência de aminoácido.

^eSpots exclusivos em epimastigota (E) ou tripomastigota (T).

^fExpressão de proteina que não apresentou diferença estatística entre os diferentes estágios de vida de *T. cruzi* pelo teste T (p<0.05). ^g *Up-regulation* em epimastigota (E>T) e tripomastigota (E<T). ^h Razão Epimastigota/trypomastigota (E/T) volume do *spot* com o erro padrão amostral (SEM).

Valor da estatística T(teste T para uma amostra).

^jValor da probabilidade da razão E/T ser diferente de 1 devido ao acaso.

O resultado apresentado na Tabela 2 mostra a expressão relativa (expressão diferencial ou estágio-específica) dos *spots* identificados nas duas formas de vida do *T. cruzi.* Foram identificadas 29 proteínas do mapa 2-DE da forma epimastigota (Figura 11); sete *spots* (1, 3, 4, 20, 25,27 e 28) não foram pareados no gel de tripomastigota (Figura 13). Além disso, quatro *spots* apresentaram expressão diferencial entre as formas de vida do parasito. Os *spots* 5 e 12 apresentaram uma maior expressão na forma epimastigota, já os *spots* 2 e 6 foram mais expressos na forma tripomastigota. Como mencionado anteriormente, os *spots* 30, 31 e 32 foram exclusivos da forma tripomastigota.

Citrato sintase (*spot* 2), uma enzima do ciclo de *Krebs* apresenta uma maior expressão em tripomastigoto do que em epimastigoto. Por outro lado, enzimas relacionadas ao metabolismo de aminoácidos, tais como, alanina aminotransferase e L-treonina-3-desidrogenase (*spot* 12) apresentam maior expressão em epimastigoto do que em tripomastigoto. Esses resultados corroboram o conhecimento atual sobre o metabolismo de *T. cruzi*. A forma epimastigota, que vive no intestino do inseto vetor, obtém sua energia a partir de aminoácidos, como a L-prolina e/ou L-glutamina, que são os componentes principais da hemolinfa do inseto e dos fluidos teciduais (Bringaud *et al.*, 2006). Consequentemente, a forma epimastigota utiliza a glicose como fonte de carbono, já que este se encontra em abundância no hospedeiro mamífero (Bringaud *et al.*, 2006).

Spots 3 e 4 foram identificados como desidrogenases de *T. cruzi*. Essas proteínas são NAD(P)H flavina oxidoredutases as quais catalizam a síntese de prostaglandinas PGF2 α em *T. cruzi*, assim como reduzem algumas drogas tripanocídas. Murta e colaboradores (2006) demonstraram para a forma epimastigota de *T. cruzi* que o tipo selvagem do parasito apresenta maior transcrição do gene resistente ao benzonidazol do que o parasito isolado *in vitro*; benzonidazol é uma das drogas usada para o tratamento da doença de Chagas. Nesse trabalho, NAD(P)H flavina oxidoredutases aparece apenas na forma epimastigota, o que corrobora os resultados obtidos por meio da tecnologia MUDPIT (Atwood *et al.*, 2005).

60

Embora epimastigota e tripomastigota apresentem flagelos, a proteína de 69 kDa paraflagelar, que é um componente flagelar de *T.cruzi*, foi identificada apenas na forma tripomastigota (*spot* 30) e na parte mais ácida do 2-DE gel de pH 6-11. Provavelmente, isoformas dessa proteína também se encontram na forma epimastigota, porém em faixas pHs mais ácidos. Contudo, não houve pareamento entre os *spots* na região correspondente as proteínas paraflagelares do 2-DE gel (pH 4-7) de epimastigota com o 2-DE gel (pH 4-7) de tripomastigota (Paba *et al.*, 2004b). A proteína estágio específica paraflagelar de 69 kDa identificada apenas na forma tripomastigota indica que existe diferenças na composição molecular entre essas formas de vida de *T. cruzi*.

A proteína calpaína-símile (*spot* 25) foi detectada apenas na forma epimastigota. A familia das calpaínas e calpaína-símiles compreendem uma grande família de genes em kinetoplastídeos, constituindo mais de 20 sequências de genes no genoma de *T. cruzi* (Ersfeld *et al.*, 2005). Estudos anteriores mostraram que alguns membros dessa família apresentam uma maior expressão em epimastigota do que em tripomastigota (Atwood *et al.*, 2005).

O spot 31, detectado apenas no gel de tripomastigota, é uma proteína pertecente a família das *trans*-sialidases. *Trans*-sialidase é uma proteína presente na superfície celular responsáveis pela incorporação do ácido siálico da célula do hospedeiro para glicoproteínas do parasito e desempenham um papel na evasão imune e também participa do mecanismo de entrada na célula do hospedeiro (Frasch, 2000). Estudos anteriores utilizando análise por MUDPIT mostraram a presença de *trans*-sialidase em tripomastigota e sua ausência em epimastigota (Atwood *et al.*, 2005), esse fato valida a técnica comparativa usada nesse trabalho.

5.1.1. Conclusões

O protocolo otimizado para a 2-DE na faixa de pH 6-11 possibilitou a construção do mapa básico da forma epimastigota de *T. cruzi*. Foram detectados cerca de 700 *spot*s na faixa de pH 6-11 e cerca de 400 *spot*s acima do p*I* 7.0. Trabalhos anteriores, com a mesma quantidade de proteína (500 μ g) e com a mesma forma adaptativa (epimastigota) de *T. cruzi* mostraram apenas 350 *spots* em 2-DE em faixa de pH 3-10 (Parodi-Talice *et al.*, 2004). Vale lembrar que os dois experimentos foram corados com nitrato de prata.

A metodologia "gel dois-em-um" foi usada na análise comparativa entre as formas flageladas de *T. cruzi*, epimastigota e tripomastigota. Essa metodologia facilitou sobremaneira a análise computacional, por minimizar as variações inerentes a eletroforese bidimensional.

A análise comparativa dos perfis bidimensionais entre as formas flageladas, tripomastigota e epimastigota, revelou diferenças na expressão de proteínas. Essa diferença está de acordo com a biologia do parasito, além de corroborar os resultados encontrados em estudo anteriores proteômicos de *T. cruzi*.

5.2. Subproteômica comparativa entre as formas tripomastigota e amastigota na região alcalina de pH Esta etapa decreve a análise comparativa entre as formas de vida encontradas no hospedeiro vertebrado, tripomastigota e amastigota, usando géis bidimensionais alcalinos (Magalhães, 2006).

Em função da quantidade de proteínas aplicadas nos géis 2-DE alcalinos e o nível de detecção da coloração utilizada, a média do número de spots de tripomastigota foi 787 (dp= 100), já a média de amastigota foi de 700 spots (dp= 31). Como discutido anteriormente, a coloração de géis com nitrato de prata apresenta algumas limitações (Valcu & Valcu, 2007). A grande variabilidade no número de spots encontrada na forma tripomastigota (dp= 100) pode ser explicada por problemas na revelação com nitrato de prata; sabe-se que a quantidade do número de spots é diretamente proporcional ao tempo de exposição à solução de revelação. Na seção 5.1 obteve-se a análise comparativa usando a técnica "gel dois-em-um", a qual contorna as dificuldades inerentes a 2-DE, tal como, problemas com a coloração O objetivo inicial, dessa etapa do trabalho, que era comparar o mapa 2-DE alcalino das três formas, epimastigota, tripomastigota e amastigota e, para tanto, a técnica "gel dois-em-um" não seria apropriada. Posteriormente optou-se por realizar uma análise comparativa mais detalhada das formas presentes no hospedeiro vertebrado.

O teste de *Shapiro–Wilk* (1965) foi aplicado ao conjunto de valores dos volumes normalizados de cada *spot*. Em seguida, aplicou-se o teste T entre as amostras. O resultado obtido foi o seguinte: 45 *spots* apresentaram uma maior expressão em amastigota (T<A), 26 *spots* apresentaram uma maior expressão em tripomastigota (T>A), 103 *spots* foram exclusivos da forma tripomastigota (T) e 34 *spots* exclusivos da forma amastigota (A). Dos 208 *spots* que apresentaram diferença de expressão foram identificados 66 *spots* por PMF (Tabela 3) e 4 *spots* por MSMS (Tabela 4), sendo que o *spot* 21 foi identificado pelos dois métodos.

As figuras 14 e 15 trazem os perfis 2-DE alcalinos das formas tripomastigota e amastigota, respectivamente. As identidades desses *spots* são apresentadas na tabela 3. Para facilitar a visualização da diferença de expressão entre as formas tripomastigota e amastigota utilizou-se um recurso do *software ImageMaster 2D Platinum 6.0 (GE Healthcare)*, o qual permite ampliar a região do gel a ser analisada. A figura 16 apresenta o zoom das

regiões do gel de tripomastigota e amastigota indicando os 8 *spots* identificados que foram mais expressos na forma tripomastigota (T>A), a figura 17 mostra os 4 *spots* identificados que foram mais expressos na forma amastigota (T<A), a figura 18 apresenta os 6 *spots* identificados exclusivos de tripomastigota e a figura 19 traz os 7 *spots* identificados exclusivos de amastigota.

A correlação estatística entre os valores teóricos e experimentais da massa molecular (Pearson r = 0,896, P<0,001) foi maior que a correlação entre os valores de p*I* (Pearson r =0,489, P<0,001), de modo similar ao observado nos experimentos de comparação entre os mapas 2-DE das formas epimastigotas e tripomastigotas. Como mencionado anteriormente, a baixa correlação entre os valores teóricos e experimentais do p*I* é provavelmente devida a modificações pós-traducionais (PTMs) (Figura 20) (Halligan *et al.*, 2004; Charneau *et al.*, 2007).

A maior parte das proteínas identificadas apresenta função metabólica (52%), desse total 26% fazem parte especificamente do metabolismo de carboidratos e 9% do metabolismo do ácido tricarboxílico. Foram identificadas, também, proteínas que participam do enovelamento de proteínas (7%), proteínas com função proteolítica (8%), proteínas com função anti-oxidante (6%), proteínas com função desconhecida (15%), dentre outras (12%) (Figura 21).

Figura 14. Mapa 2-DE alcalino de tripomastigota. As proteínas foram separadas na faixa de pH 6-11 seguido de SDS-PAGE 12%. O gel foi corado com nitrato de prata. Os números dos *spots* correspondem as proteínas identificadas por PMF presente na Tabela 3.

Figura 15. Mapa 2-DE alcalino de amastigota. As proteínas foram separadas na faixa de pH 6-11 seguido de SDS-PAGE 12%. O gel foi corado com nitrato de prata.Os números dos *spots* correspondem as proteínas identificadas por PMF presente na Tabela 3.

	Nºacesso		MAS	СОТ	p/ ^d	MW ^d			
Spot ^a	(NCBI)	Proteína	Seq. Cov(%) ^b	Score ^c	Exp (Teo)	Exp (Teo)	Expressão	Teste T	p-valor
1	gi\71660357	Aconitase putative	16	85	6.8 (6.4)	99.3 (99.5)	T=A	-1.19	0.30
2	gi\71660357	Aconitase putative	39	235	6.9 (6.4)	98.5 (99.5)	T=A	2.153	0.098
3	gi\71409133	Trans-sialidase, putative	11	92	7.2 (8.4)	89.5 (81.4)	T ^e	_	_
4	gi\71662506	Malic enzyme	43	121	7.0 (6.6)	71.5 (63.1)	T=A	-0.61	0.57
5	gi\71417832	Hypothetical protein	13	79	7.9 (8.8)	62.0 (85.3)	T <a<sup>f</a<sup>	5.32	0.006
6	gi\71660729	Katanin-like protein	23	69	6.9 (6.6)	57.8 (50.2)	T=A	-0.41	0.70
7	gi\78127681	ISG75 (T. Brucei rhodesiense)	20	98	7.1 (5.5)	59.1 (58.6)	T=A	0.70	0.52
8	gi\71407351	Citrate synthase	27	130	8.1 (8.6)	58.2 (53.0)	T=A	0.45	0.68
9	gi\205278886	Elongation factor alpha G5	37	116	9.3 (8.9)	58.3 (49.3)	T=A	-0.42	0.70
10	gi\716631174	Succinyl-CoA ligase (GDP-forming) beta chain	32	131	6.2 (8.3)	52.5 (46.1)	T=A	-0.35	0.75
11	gi\71665461	Enolase, putative	25	98	6.4 (5.9)	53.6 (46.9)	T=A	-0.02	0.98
12	gi\71411514	RNA helicase, putative	25	117	6.9 (6.6)	54.1 (49.9)	T=A	-1.26	0.28
13	gi\71420819	2-oxoisovalerate dehydrogenase alpha subunit, putative	26	102	6.8 (7.7)	51.6 (48.9)	T=A	2.138	0.099
14	gi\71412267	2-oxoglutarate dehydrogenase, E2 component, dihydrolipoamide succinyltransferase	29	107	6.9 (9.2)	49.6 (44.3)	T=A	-0.56	0.61

 Tabela 3. Proteínas identificadas de T. cruzi e análise da expressão diferencial entre as formas tripomastigota e amastigota

	Nº acesso		MAS	СОТ	p/ ^d	MW ^d			
Spot ^a	(NCBI)	Proteína	Seq. Cov(%) ^b	Score ^c	Exp (Teo)	Exp (Teo)	Expressão	Teste T	p-valor
15	gi\71659757	Isocitrate dehydrogenase, putative	31	149	7.8 (7.7)	49.5 (47.2)	T=A	1.35	0.25
16	gi\71665461	Enolase	37	116	6.2 (5.9)	52.5 (47.0)	T=A	-0.53	0.63
17	gi\71649278	Isocitrate dehydrogenase	40	184	7.9 (8.8)	46.9 (49.1)	T=A	1.44	0.22
18	gi\71665751	Proteasome regulatory ATPase subunit, putative	21	79	8.8 (8.8)	48.6 (45.6)	T ^e	_	_
19	gi\71650629	2-amino-3-ketobutyrate coenzyme A ligase	33	79	7.2 (6.7)	46.5 (44.1)	T <a<sup>f</a<sup>	-3.37	0.03
20	gi\71411043	Aspartate aminotransferase	29	79	7.7 (7.6)	46.0 (45.2)	T>A ^g	2.85	0.05
21	gi\71414543	Fructose-biphosphate aldolase, glycosomal. putative	32	117	8.7 (8.8)	48.5 (41.3)	T ^e	_	_
22	gi\714145543	Fructose-biphosphate aldolase, glycosomal. putative	23	86	8.9 (8.8)	49.0 (41.3)	T>A ^g	3.15	0.034
23	gi\71407949	Arginine kinase, putative	57	230	6.6 (6.3)	44.2 (40.5)	T=A	0.78	0.48
24	gi\71425268	Protein disulfide isomerase	29	136	6.9 (6.7)	44.3 (42.1)	T>A ^g	2.08	0.05
25	gi\71406398	Transaldolase	46	146	6.2 (6.0)	42.2 (36.6)	T=A	-1.27	0.27
26	gi\71659743	Ribokinase, putative	33	122	7.1 (7.0)	42.5 (35.8)	T>A ^g	2.78	0.045
27	gi\71665751	Proteasome regulatory ATPase subunit, putative	28	79	7.5 (8.8)	43.5 (45.6)	T=A	-1.127	0.323
28	gi\71667777	Succinyl-CoA synthetase alpha subunit	28	76	7.9 (8.4)	41.5 (32.2)	T=A	-0.4	0.71

	Nº acesso		MAS	СОТ	p/ ^d	MW ^d			
Spot ^a	(NCBI)	Proteína	Seq. Cov(%) ^b	Score ^c	Exp (Teo)	Exp (Teo)	Expressão	Teste T	p-valor
29	gi\159157547	Glycosomal glyceraldehyde-3-phosphate dehydrogenase	40	122	9.3 (7.2)	44.1 (35.2)	T=A	0.88	0.43
30	gi\71406160	L-threonine 3-dehydrogenase, putative	28	93	6.9 (6.7)	41.5 (37.3)	T=A	2.169	0.139
31	gi\71665867	Glyceraldehyde 3-phosphate dehydrogenase. Cytosolic, putative	38	93	8.7 (8.6)	41.5 (36.6)	T ^e	_	_
32	gi\71656813	Glysomal malate dehydrogenase	29	90	7.5 (8.8)	41.5 (34.3)	T>A ^g	3.60	0.023
33	gi\71414199	Mitochondrial malate dehydrogenase	32	125	8.2 (7.6)	39.2 (31.9)	T=A	-1.3	0.26
34	gi\71414199	Mitochondrial matate dehydrogenase	33	85	8.5 (7.6)	39.4 (31.9)	T=A	-1.24	0.28
35	gi\71423816	ADP/ATP translocase	17	66	6.1 (9.2)	36.4 (38.6)	T=A	0.16	0.88
36	gi\71664976	Protein kinase	23	67	6.8 (6.6)	37.9 (30.9)	T=A	0.36	0.74
37	gi\71649252	Electron-transfer-flavoprotein, alpha polypeptide	29	78	7.2 (8.3)	37.9 (33.6)	T=A	1.00	0.38
38	gi\71665869	Short chain 3-hydroxyacyl-coA dehydrogenase	26	70	7.3 (8.8)	35.9 (35.8)	T=A	-0.57	0.6
39	gi\71412979	Ascorbate-dependent peroxidase	31	76	6.2 (7.6)	33.2 (37.1)	T=A	-1.03	0.36
40	gi\71403465	Hypothetical protein	29	79	6.5 (6.3)	30.4 (29.0)	T>A ^g	9.46	0.001
41	gi\71409750	Proteasome alpha 7 subunit	49	108	6.6 (6.4)	31.0 (28.2)	T=A	0.86	0.44
42	gi\71419025	Pyrroline-5-carboxylate reductase	29	67	7.7 (7.5)	30.5 (29.1)	T>A ^g	3.78	0.02

	N⁰acesso		MAS	COT	p/ ^d	MW ^d			
Spot ^a	(NCBI)	Proteína	Seq. Cov(%) ^b	Score ^c	Exp (Teo)	Exp (Teo)	Expressão	Teste T	p-valor
43	gi\71396207	Enoyl-CoA hydratase. mitochondrial precursor	31	73	8.2 (8.8)	31.5 (29.1)	T=A	-1.48	0.21
44	gi\71411031	Proteasome activator protein PA26	43	136	6.6 (5.5)	30.3 (25.0)	T>A ^g	4.10	0.05
45	gi\71659830	Proteasome beta 2 subunit	30	80	7.2 (9.1)	29.6 (33.6)	T=A	-0.33	0.76
46	gi\71652686	Hypothetical protein	30	98	7.4 (8.9)	30.1 (32.6)	T=A	-0.17	0.87
47	gi\71662824	Adenine phosphoribosyl transferase	42	90	7.2 (7.0)	28.4 (24.5)	T <a<sup>f</a<sup>	-5.17	0.01
48	gi\17224953	Tryparedoxin peroxidase	27	68	6.3 (6.0)	27.6 (22.7)	T=A	-1.12	0.33
49	gi\71414937	Iron superoxide dismutase	52	67	7.2 (7.1)	26.5 (23.5)	T=A	-1.64	0.18
50	gi\71414910	Hypothetical protein	50	70	7.1 (6.9)	25.6 (21.5)	T=A	-0.05	0.96
51	gi\71405176	Peptide methionine sulfoxide reductase	30	66	6.3 (6.1)	23.1 (20.2)	T=A	-1.73	0.16
52	gi\71659715	Cyclophilin A	58	107	8.4 (8.4)	21.3 (19.0)	T=A	0.83	0.45
53	gi\71424445	Glutathione peroxidase-like protein	34	69	7.6 (7.7)	20.4 (18.5)	T=A	-0.24	0.82
54	gi\71651158	Hypothetical protein	37	79	9.1 (9.0)	18.2 (16.5)	T ^e	_	_
55	gi\71418782	Heat shock protein 20	46	70	7.5 (7.8)	17.2 (16.0)	T <a<sup>f</a<sup>	-4.71	0.01
56	gi\71660220	Hypothetical protein	18	91	9.2 (5.3)	16.4 (53.6)	T=A	-1.04	0.36

	N⁰ acesso		MAS	СОТ	p/ ^d	MW ^d			
Spot ^a	(NCBI)	Proteína	Seq. Cov(%) ^b	Score ^c	Exp (Teo)	Exp (Teo)	Expressão	Teste T	p-valor
57	gi\71406824	Hypothetical protein	54	77	8.6 (8.5)	15.1 (11.9)	T=A	0.951	0.395
58	gi\71413094	Dynein light chain, putative	56	79	6.7 (6.8)	14.6 (12.9)	T ^e	_	_
59	gi\71425263	10 kDa heat shock protein	49	68	8.0 (9.0)	14.3 (10.7)	T=A	-1.36	0.25
60	gi\71661302	ATP_dependent, Clp protease, heat shock protein 78 putative	19	82	6.7 (7.3)	91.0 (90.6)	A ^e	_	_
61	gi\71404288	ATP-dependent Clp protease subunit. heat shock ptn 78. putative	34	113	6.5 (6.0)	90.0 (41.6)	A ^e	_	_
62	gi\71663584	Hypothetical protein	19	99	6.6 (7.0)	87.0 (67.6)	A ^e	_	_
63	gi\71402138	Chaperonin TcP20, putative	18	77	7.0 (7.6)	68.0 (59.5)	A ^e	_	_
64	gi\71664019	Hypothetical protein	24	106	7.3 (6.3)	60.2 (52.1)	A ^e	_	_
65	gi\34329200	6-phosphogluconate dehydrogenase	23	101	7.3 (7.1)	57.3 (52.4)	A ^e	_	_
66	gi\71416304	Hypothetical protein	27	103	7.3 (7.5)	47.7 (43.3)	A ^e	_	_

^aNúmero do *spots* correnpondente ao número indicado nas figuras 14 e 15.
^bPorcentagem da cobertura de seqüência predita por peptídeos pareados via Mascot
^cProbabilidade (*Mowse Score*) do *software Mascot*^d MM e p/ teóricos calculados a partir da seqüência de aminoácidos
^e Spots exclusivos de amastigota (A) ou tripomastigota (T)
^fSignificado da expressão diferencial *up-regulation* em tripomastigota (T>A)
^gSignificado da expressão diferencial *up-regulation* em tripomastigota (T>A)

Tabela 4	. Proteínas	identificadas	por	MS/MS.
----------	-------------	---------------	-----	--------

Spot ^ª	Proteína	N° acesso (NCBI)	Seq de aminoácidos	Score ^b	p/ Exp (Teo) ^c	MM Exp (Teo) ^c	Expressão
24	Fructose-	ai\7141124	K.ASTGETFVQLLQRK e	56	8,7	48,5	тd
21	aldolase,	gi(7141154	ATPGQVAQYTVSTLAR	50	(8,8)	(41,3)	I.
67	Ubiquitin-	ai\7140E794		60	7,8	19,6	۸d
67	enzyme E 2,	gi\71403764	R.ENQEGFEARPSPINNER. I	00	(7,9)	(17,5)	A
	trana aialidaaa	~:\\74004070		50	6,9	88,5	τı
68	trans-sialidase	gi\71394373	IGFQLIEPSSR	59	(5,9)	(48,6)	ľ
60	protein disulfid			50	6,2	45,5	⊤ ∧f
69	putative	gi\7 1425268	KƏLEELVEYNNERI	59	(6,7)	(42,1)	I>A'

^aNúmero do *spots* correnpondente ao número indicado nas figuras 14 e 15
 ^bProbabilidade (*Mowse Score*) do *software Mascot* ^c MM e p*I* teóricos calculados a partir da seqüência de aminoácidos
 ^d Spots exclusivos de amastigota (A) ou tripomastigota (T)
 ^eSignificado da expressão diferencial *up-regulation* em amastigota (T<A)
 ^fSignificado da expressão diferencial *up-regulation* em tripomastigota (T>A)

Figura 16. Zoom dos géis 2-DE da forma tripomastigota (T) e amastigotadas (A) obtidos por meio do *software ImageMaster 2D Platinum 6.0* (GE Healthcare). *Spots* diferencialmente expressos **T>A** (p<0,05), circulados em vermelho. Cada par apresenta o número do *spot* com o nome da proteína e número de acesso NCBI (gi).

Figura 17. Zoom dos géis 2-DE da forma tripomastigota (T) e amastigotadas (A) obtidos por meio do *software ImageMaster 2D Platinum 6.0* (GE Healthcare). *Spots* diferencialmente expressos **T**<**A** (p<0,05), circulados em vermelho. Cada par apresenta o número do *spot* com o nome da proteína e número de acesso NCBI (gi).

Figura 18. Zoom dos géis 2-DE da forma tripomastigota (T) e amastigotadas (A) obtidos por meio do *software ImageMaster 2D Platinum 6.0* (GE Healthcare). *Spots* exclusivos de tripomastigota **T**, circulados em vermelho. Cada par apresenta o número do *spot* com o nome da proteína e número de acesso NCBI (gi).

gi\71664019

Spot 63 - Chaperonin TcP20, putative gi\71402138

Spot 66 - Hypothetical protein gi\71416304

Δ

Spot 65 - 6-phosphogluconate dehydrogenase gi\34329200

Figura 19. Zoom dos géis 2-DE da forma tripomastigota (T) e amastigotadas (A) obtidos por meio do software ImageMaster 2D Platinum 6.0 (GE Healthcare). Spots exclusivos de amastigota A, circulados em vermelho. Cada par apresenta o número do spot com o nome da proteína e número de acesso NCBI (gi).

Figura 20. Correlação entre a massa molecular experimental e teórica (A) e correlação entre p*I* experimental e teórico (B). Os valores foram obtidos a partir das proteínas identificadas da análise comparativa entre as formas tripomastigota e amastigota (Figuras 14 e 15). Os valores da correlação foram: Pearson r = 0,896, P < 0,001 para MM e Pearson r = 0,489, P < 0,001 para os valores de p*I*.

Figura 21. Gráfico representativo das funções das proteínas identificadas oriundos da análise comparativa entre as formas tripomastigota e amastigota (Tabela 3).

O T. cruzi é um organismo relativamente pouco estudado e distante evolutivamente dos modelos biológicos mais clássicos, por isso muitas regiões codificadoras preditas não tiveram uma anotação funcional confiável e foram classificadas genericamente como proteínas hipotéticas. Esse conjunto de genes, constituindo 52,3% das 22.570 proteínas preditas por El-Sayed et. al. (2005a), é dividido em dois grupos, denominados hipotéticas conservadas, as quais apresentam ortólogos em outros organismos, ou somente hipotéticas que, a princípio, seriam exclusivas de T. cruzi (http://www.genedb.org/Homepage/Tcruzi). Em trabalhos anteriores. podemos observar o alto número identificado dessas proteínas como, por exemplo, 34% das proteínas identificas por Ferella et. al. (2008) eram proteínas hipotéticas, assim como 36% das proteínas identificadas por Sant'Anna et. al. (2009), vale lembrar que ambas análises foram realizadas por LC-MS/MS. Em nosso estudo, apenas 12% das proteínas identificadas foram hipotéticas. As proteínas hipotéticas identificadas foram submetidas a buscas por similaridade via BLASTp (http://blast.ncbi.nlm.nih.gov/Blast.cgi) e os resultados são apresentados na Tabela 5. Do total de 10 proteínas que identificadas como hipotéticas, apenas 3 não apresentaram foram

similaridade de sequência com nenhum outro organismo. Os *spots* 5 e 40 apresentam domíno cinase; os *spots* 46 e 66 apresentam domínio desidrogenase; o *spot* 50 apresenta um domínio glutamina aminotransferase, o qual está relacionado com o metabolismo de aminoácidos; o *spot* 54 apresenta um domínio p25-*alpha* que pode participar do processo de fosforilação de proteínas e o *spot* 64 apresenta um domínio cuja a função é ligar-se ao DNA e atuar na organização e divisão cromossômica, o que pode ser explicado por essa proteína ser exclusiva da forma replicativa do parasita, isto é, amastigota.

Proteína hipotética <i>Spot</i>	№ de acesso (NCBI)	BLAST
5	gi\71417832	DAGK_cat (Diacylglycerol kinase catalytic domain)
40	gi\71403465	Protein kinase C conserved region 2 (CalB)
46	gi\71652686	Succinate dehydrogenase/fumarate reductase, Fe-S protein subunit
50	gi\71414910	Type 1 glutamine amidotransferase (GATase1)-like domain found in Human DJ-1
54	gi\71651158	p25-alpha This family encodes a 25 kDa protein that is phosphorylated by a Ser/Thr-Pro kinase
56	gi\71660220	-
57	gi\71406824	-
62	gi\71663584	-
64	gi\71664019	chromosome segregation protein SMC (structural maintenance of chromosomes)
66	gi\71416304	short chain dehydrogenase

Tabela 5. Busca por similaridade via BLAST das proteínas hipotéticas referentes a Tabela 3.

Sabe-se que a grande maioria dos tripanossomatídeos dependem de fontes de carbono que estão presentes em compartimentos específicos de seus hospedeiros para produzirem o seu metabolismo energético. Do total das proteínas identificadas, 26% fazem parte do metabolismo de carboidratos. Tanto as formas tripomastigotas quanto amastigotas de T. cruzi utilizam glicose, que é abundante nos fluidos de seus hospedeiros vertebrados (Simone, 2010). O spot 65, 6-fosfogluconato desidrogenase, foi encontrado apenas na forma amastigota. Essa enzima participa do metabolismo de pentose fosfato representando mecanismo de defesa contra o estresse oxidativo (Dias et al., 2009). A via das pentoses fosfato (VPF) é uma via alternativa de oxidação de glicose na maioria das células eucarióticas, sendo possível que as células ajustem suas necessidades de ATP, poder redutor e precursores nucleotídicos. Apesar da regulação da VPF ainda não ser bem compreendida, sabe-se que sua ativação é indiscutivelmente necessária nas formas proliferativas (Simone, 2010). Esse fato corrobora a identificação encontrada.

Os spots 21 e 31 foram exclusivos da forma tripomastigota. Destaca-se o spot 31, gliceraldeído-3-fosfato desidrogenase (GAPDH), que é uma enzima da via glicolítica do T. cruzi e um alvo macromolecular interessante devido ao seu papel essencial no metabolismo de tripanossomatídeos. Um estudo demonstrou que tripanossomatídeos presentes na corrente sanguínea morrem em minutos guando incubados com inibidores potentes da GAPDH, como a pentalenolactona e o bromopiruvato 33 (Verlinde et al., 2001). Além disso, a grande distância evolucionária entre tripanossomos e humanos e a organização específica desta via nos parasitas, explicitam distintas propriedades que podem ser exploradas no planejamento de inibidores seletivos da GAPDH. Estudos também reportaram que mais do que 95% de deficiência de GAPDH em eritrócitos não resulta em nenhum sintoma clínico no organismo do hospedeito, o que a torna um alvo biológico atrativo para o desenvolvimento de novos quimioterápicos antichagásicos (Bakker et al., 1999; Bakker et al., 2000). Recentemente, vários inibidores dessa enzima foram avaliados (Zottis, 2009).

As triparedoxinas peroxidases, *spot* 48, pertencem a família das peroxidases multifuncionais, as peroxi-redoxinas, que são proteínas

81

antioxidantes tiol-específicas e que conferem um papel protetor das células por meio da sua atividade peroxidase, reduzindo peróxido de hidrogênio, peroxinitrito e hidroperóxidos orgânicos. A triparedoxina peroxidase está envolvida defesa contra estresse oxidativo na 0 em parasitos tripanossomatídeos (Alphey et al., 2000). Essa proteína havia sido identificada anteriormente em géis 2-DE de T. cruzi (Paba et al., 2004b; 2009). No presente trabalho, não observamos Guércio. diferencas significativas de expressão desta proteína entre as duas formas do parasito, assim como no trabalho de Guércio (2009).

Cinco proteínas identificadas nesse trabalho pertencem a família das heat shock protein (HSPs) ou proteínas de choque térmico, sendo três delas exclusivas da forma amastigota (spots 60, 61 e 63) e uma proteína mais expressa nessa forma do que em tripomastigota (spot 55). As HSPs, junto com actinas, tubulinas e histonas fazem parte do grupo de proteínas constitutivas (housekeeping proteins) e tem sido observadas por vários autores em trabalhos de proteômica de T. cruzi (Paba et al., 2004b; Parodi-Talice et al., 2007; Sodre et al., 2009). A resposta ao choque térmico é um mecanismo homeostático que protege as células dos efeitos deletérios do estresse ambiental, tal como calor. Esta resposta é universal e inclui a síntese de HSP (Folgueira & Requena, 2007). Os mecanismos moleculares que estão envolvidos na regulação do remodelamento da expressão gênica em virtude da adaptação a novos ambientes são a chave para a elucidação de muitas respostas sobre o comportamento celular perante estímulos adversos. O papel das HSPs nas interações parasito-hospedeiro merecem atenção especial. Da perspectiva do vetor, as HSPs expressas pelo hospedeiro intermediário durante a invasão do parasita são potenciais antígenos que provocam a reposta imune. As HSPs do parasita são potencialmente úteis como alvos de vacinas. Da perspectiva do parasita, a síntese de HSPs é um mecanismo de defesa celular que permite que o parasita viva em diferentes ambientes térmicos ao longo do seu ciclo de vida. Existem vários estudos demonstrando como ocorre a regulação da expressão de HSPs no parasita, bem como, a expressão diferencial destas proteínas ao longo do ciclo de vida e os tipos de HSPs que são induzidas quando há mudanças de temperatura. Por exemplo, em *T. brucei*, trancritos de mRNA de

82

HSP 70 e HSP 83 aumentam sua expressão em 100 vezes quando passam do vetor para o hospedeiro mamífero (Feder & Hofmann, 1999). Encontramos uma maior expressão de HSPs na forma amastigota, no entanto, a diferenciação de tripomastigota para amastigota não coincide com um aumento de temperatura, uma vez que ambas as formas residem no hospedeiro mamífero.

Foram identificadas cinco proteínas pertencentes a um complexo de proteases que são responsáveis pela maior parcela da atividade proteolítica das célula, o proteassoma. O proteassoma é um complexo intracelular que controla a degradação de proteínas em organismos desde arqueobactérias a mamíferos. Em alguns parasitos protistas, incluindo o *T. cruzi*, o proteasoma está envolvido na diferenciação celular e replicação (Cardoso *et al.*, 2008). O proteassoma é responsável pela destruição de proteínas anormais, em excesso ou antigas, que podem ser tóxicas para as células. Está também envolvido na geração de peptídeos para a apresentação de antígenos por meio de moléculas MHC de classe I (Glickman & Ciechanover, 2002). Esse fato pode explicar a constatação de que o *spot* 18 (*proteasome regulatory ATPase subunit, putative*) ter sido encontrado apenas na forma tripomastigota e o *spot* 44 (*proteasome activator protein PA26*) ser mais expresso na forma tripomastigota. As outras proteínas pertencentes a esse complexo de proteases não apresentaram diferença de expressão significativa.

5.2.1. Conclusões

A partir de géis 2-DE em faixa de pH 6-11, foram detectados cerca de 787 *spots* em tripomastigota e cerca de 700 *spots* na forma amastigota. Esses valores comprovam que, em géis de faixa ampla de pH, as proteínas básicas podem ser subestimadas.

Foram identificadas 69 proteínas, sendo que 66 proteínas foram identificadas por PMF e/ou MSMS e 3 proteínas foram identificadas exclusivamente por MSMS.

Algumas proteínas identificadas são potenciais alvos de quimioterapia para a doença de Chagas, tais como, gliceraldeído 3- fosfato, HSP, *trans*-sialidase.

O presente trabalho confirmou a existência de sete proteínas hipotéticas conservadas, e três proteínas hipotéticas que não apresentam homologia com nenhum outro organismo.

A análise comparativa dos perfis bidimensionais entre as formas tripomastiga e amastigota, revelou diferenças na expressão de proteínas. Pode-se comprovar que essa diferença está de acordo com a biologia do parasito, além de corroborar os resultados encontrados em estudos proteômicos anteriores de *T. cruzi*.

6. Variação do fosfoproteoma durante a amastigogênese

Nesta etapa do trabalho, foi estudada a fosforilação de proteínas durante o processo de amastigogênese, tendo em vista que o fenômeno de fosforilação/desfosforilação está envolvido na diferenciação celular nos eucariotos superiores (Cohen, 1992; Lechward *et al.*, 2001). O processo de amastigogênese foi simulado *in vitro*. A produção de amastigotas axênicos pela incubação de tripomastigotas em meio ácido (pH 5,0) tem sido amplamente utilizada. Tomlinson e colaboradores (1995) comprovaram que os amastigotas axênicos não são simplesmente morfologicamente semelhantes aos amastigotas intracelulares, mas compartilham com esses várias características bioquímicas, expressão de antígenos de superfície estágio-específicos e a capacidade replicativa imprescindível para o ciclo de vida do *T. cruzi*, característico desse estágio.

A partir da incubação de tripomastigotas em meio de cultura ácido, conhecido por induzir a diferenciação até obter amastigotas em mais ou menos 9 horas (Tomlinson *et al.*, 1995), coletou-se parasitas na forma tripomastigota antes da diferenciação, durante o processo nos tempos de diferenciação T¹/₂ h, T1 h, T2 h, T4 h, e na forma final amastigota (Tama). Devido à intensa participação do fenômeno de fosforilação/desfosforilação na diferenciação celular, foram escolhidos períodos de tempo no início do processo com o objetivo de estudar os fatores que o desencadeiam.

As porcentagens entre as formas tripomastigota e amastigota coletadas em seis diferentes tempos encontram-se na Tabela 6. Para cada tempo selecionado, obteve-se o perfil bidimensional na faixa ampla de pH 3-10 (Figura 22). O experimento foi realizado em duplicata.

Tabela	6.	Distribuçâ	ÍO	em	porc	entager	n das	forr	nas	tripon	nastigota	ı e
amastigo	ota	presentes	no	meio) de	cultura	ácido,	nos	difer	entes	tempos	até
amastigo	ota											

Tempos	T0 h	$T y_2 h$	T1 h	T2 h	T4h	T ama
% Tripomastigota	88	58	61,6	53,5	29	2
% Amastigota	12	42	38,4	46,5	71	98

Figura 22. Eletroforese bidimensional durante a amastigogênese nos diferentes tempos de coleta do parasito. Aplicou-se 110 μ g de proteína, o equivalente a 5 x 10⁷ parasitos, por gel (pH 3-10) SDS-PAGE 10%. A) Géis revelados com o reagente *Pro-Q Diamond Phosphoprotein Gel Stain* e B) os mesmos géis corados com nitrato de prata (Blum *et al.*, 1987)

A análise de imagens permitiu quantificar o número de *spots* fosforilados em cada um dos tempos em que os parasitos foram coletados (Tabela 7). Após o pareamento, apenas 165 *spots* marcados fosforilados aparecerem nos dois géis da duplicata e assim puderam ser submetidos a análise estatística. O resultado da análise estatística apresentou: 60 *spots* comuns aos 6 tempos; 33 *spots* comuns a 5 tempos; 24 *spots* comuns a 4 tempos; 19 *spots* comuns a 3 tempos; 19 *spots* comuns a 2 tempos e 10 *spots* exclusivos do tempo 0 h (Figura 23).

Tabela 7. Número de *spots* fosforilados detectados em cada um dos experimentos revelados com *ProQ Diamonds* (ProQ), com suas respectivas médias e desvio padrão (DP).

№ spots Pro Q											
Tempos (h)	s Experimento № <i>spots</i> Média DP										
ТО	1	532	574	59,4							
	2	616		,							
T1/2	1	593	584	12 7							
1172	2	575	004	12,1							
T1	1	521	528	10.6							
	2	536	020	10,0							
T2	1	612	666	76 4							
12	2	720	000	10,1							
T4	1	614	577	52.3							
	2	540	011	02,0							
Tama	1	569	512	80,6							
	2	455		,							

88

Total de Spots

Figura 23. Distribuição dos spots protéicos ao longo dos tempos de coleta.

Corforme esperado, alguns spots aparecem e desaparecem durante e após diferenciação, algumas proteínas foram fosforiladas e/ou desfosforiladas ao longo do processo. Dessa forma, dos 33 spots fosforilados comuns a cinco dos tempos de coleta, 24 desaparecem guando o parasito se diferencia em amastigota. Dos 24 spots comuns a quatro tempos, 10 spots desaparecem nos tempos T4 h e Tama. Dos 19 spots comuns a três tempos, 7 spots desaparecem nos tempos T2 h, 4h e Tama e 6 spots desaparecem nos tempos T1 h, T4 h e Tama. Dos 19 spots comuns a apenas dois dos tempos, 10 spots aparecem apenas nos dois primeiros tempos de diferenciação (T0 h e T¹/₂ h). Esses resultados comprovam a dinâmica da diferenciação entre as formas de vida do parasito. A figura 25 representa o perfil 2-DE do tempo T0 h, e os números correspondem as proteínas identificadas nos 6 tempos do processo de diferenciação. A identidade desses spots encontram-se na Tabela 9; e a Tabela 10 apresenta a proteína identificada indicando o tempo no qual o spot aparece com sua respectiva função.

De acordo com o que foi descrito na seção material e métodos, a obtenção dos *spots* exclusivos de cada tempo consistiu em trocar a ordem do gel referência na análise de imagens, as quais foram digitalizadas no

programa *Imagemaster*. Os resultados do número de *spots* exclusivos de cada um dos tempos encontra-se na Tabela 8.

Тетро	Nº spots
(h)	exclusivos
Т0	10
T½	20
T1	24
T2	20
T4	6
Tama	37

Tabela 8. Número de s*pots* fosforilados exclusivos de cada um dos tempos analisados.

As figuras 26, 27, 28, 29 e 30 correspondem aos perfis 2-DE de cada tempo com os *spots* exclusivos que foram identificados.

A correlação estatística entre os valores teóricos e experimentais da massa molecular (Pearson r=0,854, P<0,001) foi maior que a correlação entre os valores de p/ (Pearson r=0,815, P<0,001) (Figura 24). Sabe-se que a principal causa dessa variação é a ocorrência de modificações póstraducionais. As modificações pós-traducionais (PTMs) de proteínas são elementos indispensáveis para a comunicação celular. Além disso, as PTMs são reversíveis por via enzimática e são mediadas por modificações de determinadas cadeias laterais dos aminoácidos. Cerca de 30% do total de proteínas presentes em células eucarióticas apresentam fosforilação em determinado momento do ciclo celular (Venter et al., 2001). Quando fosforiladas, proteínas apresentam diminuição do seu pl, fato que pode ser observado com a presença de isoformas em géis bidimensionais. Atualmente existem vários softwares capazes de prever PTMs utilizando a sequência primária da proteína. Por exemplo, 0 site http://scansite.mit.edu/calc mw pi.html é capaz de informar quantas fosforilações podem ter ocorrido em determinada proteína para que ela tivesse diminuição em seu pl. Algumas proteínas identificadas (Tabela 9) foram analisadas nesse site. Observamos que o spot 2725, mitochondrial

90

heat shock, apresentou diferença entre o p*I* teórico (5,9) e experimental (5,6), segundo a análise realizada pelo *site* essa diferença entre os p*I*s pode ser explicada devido a presença de 3 fosforilações na proteína. No entanto, isso é apenas uma análise *in silico*. A variação de MM não é tão evidente pois PTMs, como por exemplo a fosforilação, variam cerca de 87-163 Da para cada sítio fosforilado. Além disso, essas proteínas podem sofrer outros PTM, o que explica termos encontrado proteinas com p*I* mais básico e/ou MM menor que os dados teóricos.

Poucos *spots* que foram identificados apresentaram fosforilação nos digestos como modificação variável. Sabe-se que fosfopeptídeos apresentam um sinal ruim no modo positivo MALDI-TOF (Siuzdak, 1996). Sendo assim, o sinal pode ter sido suprimido pelos peptídeos não fosforilados.

Figura 24. Correlação entre a massa molecular experimental e teórica (A) e correlação entre p*l* experimental e teórico (B). Os valores foram obtidos a partir das proteínas identificadas da análise comparativa entre as formas tripomastigota e amastigota (Tabela 9). Os valores da correlação foram: Pearson r = 0,854, P < 0, 001 para MM e Pearson r = 0,815, P < 0,001 para os valores de p*l*.

Figura 25. Perfil 2-DE das fosfoproteínas referente ao tempo 0h. As proteínas foram separadas na faixa de pH 3-10 seguido de SDS-PAGE 10%, o gel foi revelado com o reagente *Pro-Q Diamond Phosphoprotein Gel Stain.* Os *spots* destacados na figura correspondem as proteínas identificadas, cada cor corresponde aos tempos em que aparecem segundo a legenda acima.

Figura 26. Perfil 2-DE das fosfoproteínas referente ao tempo ½h. As processas roram separadas na faixa de pH 3-10 seguido de SDS-PAGE 10%, o gel foi revelado com o reagente Pro-Q Diamond Phosphoprotein Gel Stain. Os spots destacados correspondem aos *spots* fosforilados exclusivos desse tempo que foram identificados.

T½h

Figura 27. Perfil 2-DE das fosfoproteínas referente ao tempo 1 h. As proteínas foram separadas na faixa de pH 3-10 seguido de SDS-PAGE 10%, o gel foi revelado com o reagente *Pro-Q Diamond Phosphoprotein Gel Stain.* Os s*pots* destacados correspondem aos *spots* fosforilados exclusivos desse tempo que foram identificados.

T 1h

T2h

Figura 28. Perfil 2-DE das fosfoproteínas referente ao tempo 2 h. As proteínas foram separadas na faixa de pH 3-10 seguido de SDS-PAGE 10%, o gel foi revelado com o reagente *Pro-Q Diamond Phosphoprotein Gel Stain.* Os s*pots* destacados correspondem aos *spots* fosforilados exclusivos desse tempo que foram identificados.

T4h

Figura 29. Perfil 2-DE das fosfoproteínas referente ao tempo 4 h. As proteínas foram separadas na faixa de pH 3-10 seguido de SDS-PAGE 10%, o gel foi revelado com o reagente *Pro-Q Diamond Phosphoprotein Gel Stain.* O s*pot* destacado corresponde ao *spot* fosforilado exclusivo desse tempo que foi identificado.

Figura 30. Perfil 2-DE das fosfoproteínas referente ao tempo no qual companya diferenciação (Tama). As proteínas foram separadas na faixa de pH 3-10 seguido de SDS-PAGE 10%, o gel foi revelado com o reagente *Pro-Q Diamond Phosphoprotein Gel Stain.* Os s*pots* destacados correspondem aos *spots* fosforilados exclusivos desse tempo que foram identificados.

			MASCOT							
Spot ^a	№ acesso (NCBI)	Proteína	p/ ^b teo/ exp	MM ^c teo/ exp	Método (PMF e/ou MSMS)	Seq.Cov. (%) ^d	Score ^e	Seq. MSMS		
2621	gi 71423325	kinesin	6.4/ 4.3	111.3/ 131.8	PMF	14	71	-		
2626	gi 71662790	trans-sialidase	4.7/ 4.7	108.5/ 130.1	PMF	14	83	-		
2632	gi 71656336	Kinesin	5.4/ 5.7	128.2/ 131.3	PMF	31	171	-		
2636	gi 71422634	hypothetical protein	4.9/ 4.9	120.8/ 123.5	PMF	13	110	-		
2640	gi 71666278	calpain-like cysteine peptidase	4.9/ 5.1	96.8/ 119.4	PMF	31	174	-		
2649	gi 71650757	heat shock protein	5.3/ 5.5	94.2/ 115.5	PMF	16	111	-		
2652	gi 71401694	cytoskeleton-associated protein CAP5.5	5.3/ 5.1	82.0/ 114.2	PMF	24	151	-		
2653	gi 71401694	cytosk eleton-associated protein CAP5.5	5.3/ 4.9	82.0/ 114.2	PMF	24	103	-		
2664	gi 71403337	heat shock protein 85	5.1/ 5.2	81.2/ 104.4	PMF	22	111	-		
2691	gi 71415505	glucose-regulated protein 78	5.1/ 5.2	71.4/ 91.8	PMF/ MSMS	17	109	K.SDIHEIVLVGGSTR.V		

Tabela 9. Proteínas identificadas por PMF e/ou MSMS nos diferentes tempos de diferenciação

			MASCOT								
Spot ^a	№ acesso (NCBI)	Proteína	p <i>l^b</i> teo/ exp	MM ^c teo/ exp	Método (PMF e/ou MSMS)	Seq.Cov. (%) ^d	Score ^e	Seq. MSMS			
2708	gi 205278868	heat shock protein 70	5.3/ 5.4	71.5/ 90.4	PMF	20	115	-			
2710	gi 162117	heat shock protein HSP70	5.4/ 5.5	71.6/ 88.6	PMF	31	187	-			
2721	gi 71409780	hypothetical protein	4.8/ 5.4	94.2/ 85.7	PMF	15	106	-			
2722	gi 205278868	heat shock protein 70	5.3/ 5.6	71.5/ 86.5	PMF	27	165	-			
2725	gi 205278870	mitochondrial heat shock	5.9/ 5.6	71.5/ 83.8	PMF	22	135	-			
2734	gi 71666782	2,3-bisphosphoglycerate- independent phosphoglycerate mutase	5.6/ 5.6	60.7/ 79.0	PMF	20	68	-			
2837	gi 71420280	enoyl-CoA hydratase/isomerase family protein	5.9/ 5.7	42.3/ 53.3	PMF	21	71	-			
2839	gi 18568139	beta tubulin 1.9	4.7/ 4.8	50.5/ 53.0	PMF	38	138	-			
2844	gi 71421179	hypothetical protein	4.8/ 4.8	38.9/ 52.4	PMF	33	80	-			
2861	gi 71656281	beta tubulin	4.7/ 4.2	50.5/ 48.6	PMF	24	68	-			

					MAS	бсот		
Spot ^a	№ acesso (NCBI)	Proteína	p/ ^b teo/ exp	MM ^c teo/ exp	Método (PMF e/ou MSMS)	Seq.Cov. (%) ^d	Score ^e	Seq. MSMS
2863	gi 71406656	hypothetical protein	8.4/ 4.5	100.2/ 49.0	MSMS	-	-	R.EAEKGGGLGR.H
2865	gi 71404075	asparagine synthetase A	5.8/ 5.8	39.4/ 48.8	PMF/ MSMS	52	154	R.LLAGEFPQTIGGGIGQSR.L
2888	gi 71409780	hypothetical protein	4.8/ 4.2	94.2/ 45.1	MSMS	-	-	R.YEYGLEAR.Y R.LEYEEVLR.M R.RPVVEIATVR.Y
2891	gi 71405894	tryptophanyl-tRNA synthetase	6.6/ 6.6	44.5/ 46.2	MSMS	-	-	K.EFGSHPIDTALLER.L
2903	gi 71422448	glyceraldehyde 3-phosphate dehydrogenase	9.0/ 9.4	39.2/ 45.3	PMF	23	86	-
2906	gi 71422448	glyceraldehyde 3-phosphate dehydrogenase	9.0/ 9.5	39.2/ 45.1	PMF	30	76	-
2910	gi 71651413	hypothetical protein	9.1/ 9.8	59.1/ 44.5	PMF	18	71	-
2968	gi 71420903	pyruvate dehydrogenase E1 beta subunit	5.2/ 5.2	38.4/ 30.1	MSMS	-	-	R.VGQHISMIGFSR.G R.VSCADCPTPYAK.D
3004	gi 71415505	glucose-regulated protein 78	5.1/ 5.6	71.4/ 25.5	PMF	18	97	-
3017	gi 71666104	mucin-associated surface protein (MASP)	4.9/ 5.6	50.0/ 24.5	PMF	14	76	-

					MAS			
Spot ^a	№ acesso (NCBI)	Proteína	p <i>l^b</i> teo/ exp	MM ^c teo/ exp	Método (PMF e/ou MSMS)	Seq.Cov. (%) ^d	Score ^e	Seq. MSMS
								R.DEFVSLCEKNPNNCLDAR.M
			5.2/	23.5/	PMF/			R.DDGEKVIPPSLALVAALESGYR.F
3040	gi /1425//9	I/6 autoantigen	5.2	22.9	MSMS	25	70	K.VIPPSLALVAALESGYR.F
								K.HVSVLAPNGLFTR.V
3041	gi 71666104	mucin-associated surface protein (MASP)	4.9/ 5.9	50.0/ 23.0	PMF	14	76	-
3069	gi 71408703	tryparedoxin peroxidase	7.6/ 5.2	25.8/ 21.6	PMF/ MSMS	29	92	R.HITVNDLPVGR.N
3092	gi 71423144	hypothetical protein	6.5/ 4.1	27.8/ 20.2	PMF	44	82	-
3181	gi 71416460	actin	5.4/ 5.7	38.3/ 51.7	PMF	21	77	-
								K.AACQVGWDR.A
3183	gi 71421179	hypothetical protein	4.8/ 4.9	38.9/ 51.6	PMF/ MSMS	25	102	R.AHTAYLILGDGLQSLGR.L
								K.AAILADGGSMSEALLVAEAALR.E
3230	gi 71416210	adenylate kinase	5.5/ 5.6	29.4/ 22.7	PMF/ MSMS	57	152	FGVVHISSGDLLR
								R.LMEAMYGDEGR.V
3312	gi 71425779	I/6 autoantigen	5.2/ 5.1	23.5/ 23.1	MSMS	-	-	K.HVSVLAPNGLFTR.V
								K.VIPPSLALVAALESGYR.F

		MASCOT						
Spot ^a	№ acesso (NCBI)	Proteína	p <i>l^b</i> teo/ exp	MM ^c teo/ exp	Método (PMF e/ou MSMS)	Seq.Cov. (%) ^d	Score ^e	Seq. MSMS
3236	gi 71651991	hypothetical protein	7.9/ 5.6	39.6/ 21.9	PMF/ MSMS	14	66	R.IVGLIMDVECVTR.S
1562_0,5	gi 71421977	seryl-tRNA synthetase	5.5/ 5.7	54.4/ 73.2	PMF	36	110	-
1733_0,5	gi 71411394	fructose-bisphosphate aldolase, glycosomal	8.8/ 9.5	41.3/ 42.9	PMF	22	82	-
1768_0,5	gi 1220547	beta tubulin	4.7/ 5.5	50.2/ 36.2	PMF	20	80	-
1771_0,5	gi 71407175	mitochondrial RNA binding protein	9.5/ 9.4	28.0/ 34.8	PMF	56	141	-
1771_0,5	gi 60729667	single-stranded nucleic acid binding protein Tc38	9.3/ 9.4	28.3/ 34.8	MSMS	-	-	K.FNSGLYFTNR.Q K.GEAFQILSDYIR.Q R.SPVNIPTFLLSGEPIQNESLK.K
1832_0,5	gi 71411196	glucosamine-6-phosphate isomerase	8.4/ 8.5	31.6/ 25.6	PMF	37	137	-
1854_0,5	gi 71422938	glucosamine-6-phosphate isomerase	8.4/ 9.1	31.6/ 23.2	PMF	37	114	-
								K.LVFGINSDFPVR.N
1913_0,5	gi 71404429	hypothetical protein	5.0/	23.1/	MSMS	-	-	R.TIYYNFPPSMLR.R
	gij7 1404429	nypotnetical protein	5.0	20.4				R.NPEDYPSIPTIAQLPEEVHR.T

MASCOT								
Spot ^a	№ acesso (NCBI)	Proteína	p <i>l^b</i> teo/ exp	MM ^c teo/ exp	Método (PMF e/ou MSMS)	Seq.Cov. (%) ^d	Score ^e	Seq. MSMS
2078_0,5	gi 71656380	hypothetical protein	4.7/ 4.7	23.0/ 22.9	MSMS	-	-	K.IQAVDEHVFSIEAAAR.R
2082_0,5	gi 71665449	hypothetical protein	5.2/ 4.8	39.8/ 26.4	MSMS	-	-	K.YIETQLTWLER.V R.ELQAIENDLMINVR.K
2618_1	gi 71415533	paraflagellar rod protein 3	5.8/ 6.0	69.2/ 93.4	PMF	38	143	-
2657_1	gi 71664854	stress-induced protein sti1	6.2/ 6.5	63.8/ 84.1	PMF	26	146	-
2827_1	gi 71410872	hypothetical protein	5.9/ 6.3	47.2/ 48.2	PMF/ MSMS	23	80	K.YTPQLLSYLR.R K.LWDVGSGQCVATLR.G R.NVVYSVSFNNPYGNR.V
2951_1	gi 71413338	pyridoxal kinase	6.0/ 7.6	33.6/ 27.3	PMF	30	98	-
3131_1	gi 71415533	paraflagellar rod protein 3	5.8/ 6.0	69.2/ 94.1	PMF/ MSMS	47	143	R.SQLDATQLAQVPTR.T
3214_1	gi 71414543	fructose-bisphosphate aldolase, glycosomal	8.8/ 9.9	41.3/ 41.9	PMF	21	72	-
2106_2	gi 71666726	chaperonin	5.3/ 5.3	58.8/ 78.3	PMF	18	70	-

			MASCOT							
Spot ^a	№ acesso (NCBI)	Proteína	p <i>l^b</i> teo/ exp	MM ^c teo/ exp	Método (PMF e/ou MSMS)	Seq.Cov. (%) ^d	Score ^e	Seq. MSMS		
2209_2	gi 71665461	enolase	5.9/ 6.5	47.0/ 55.9	PMF	31	151	-		
2359_2	gi 71661948	hypothetical protein	6.5/ 6.9	32.8/ 27.9	PMF	34	80	-		
2598_2	gi 71661948	hypothetical protein	6.5/ 6.8	32.8/ 31.9	PMF	29	75	-		
2678_2	gi 71664952	RNA-binding protein	6.6/ 7.2	31.6/ 23.4	PMF/ MSMS	23	67	R.YAAVTDPVVASDGFTYER.D		
1224_4	gi 71659757	isocitrate dehydrogenase	7.7/ 7.9	47.2/ 50.4	PMF	27	75	-		
1930_A	gi 71666104	mucin-associated surface protein	4.9/ 7.0	50.1/ 75.4	PMF	19	76	-		
2283_A	gi 71662506	malic enzyme	6.6/ 7.2	63.1/ 79.3	PMF/ MSMS	23	70	R.LPPVVETLEEQVAR.V		

^aSpot, número corresponde a proteína identificada indicado nas figuras 25, 26, 27, 28, 29 e 30.
^{b,c} p/ e MM teórica calculada a partir da sequência de aminoácido
^dPorcentagem da cobertura de seqüência predita por peptídeos pareados via Mascot
^eProbabilidade (*Mowse Score*) do *software* Mascot

Tabela 10. Evento de fosforilação/desfosforilação das proteínas identificadas ao longo da diferenciação, com suas respectivas funções propostas

- ~	• •	Nº acesso	Proteína —	Variaçã	ão de fosfo	orilação n	os tempos	s (Pro-Q E	Diamond)	Comportamento spot
Funçao	Spot	(NCBI)	Proteina	ТО	T½	T1	T2	Т4	Tama	(nitrato de prata)
Antioxid	ante									
	3069	gi 71408703	tryparedoxin peroxidase	Х	Х				Х	aparece em todos os tempos
	2283_A	gi 71662506	malic enzyme						Х	ND
Desconh	ecida									
	2636	gi 71422634	hypothetical protein	Х	Х	Х	Х	Х		aparece em todos os tempos
	2721	gi 71409780	hypothetical protein	Х	Х	Х	Х	Х	Х	ND
	2844	gi 71421179	hypothetical protein	Х	Х	Х	Х	Х		aparece em todos os tempos
	2863	gi 71406656	hypothetical protein	Х	х	х	х	х	Х	aparece em todos os tempos, menos Tama
	2888	gi 71409780	hypothetical protein	Х	Х	Х	Х	Х	Х	aparece em todos os tempos
	2910	gi 71651413	hypothetical protein	Х						ND
	3092	gi 71423144	hypothetical protein	Х	Х	Х	Х	Х	Х	aparece em todos os tempos
	3183	gi 71421179	hypothetical protein	Х	х	Х	Х	Х		aparece em todos os tempos
	3236	gi 71651991	hypothetical protein	х						aparece apenas no T0h
	1913_0,5	gi 71404429	hypothetical protein		Х					ND
	2078_0,5	gi 71656380	hypothetical protein		х					ND
	2082_0,5	gi 71665449	hypothetical protein		Х					ND
	2827_1	gi 71410872	hypothetical protein			х				ND
	2359_2	gi 71661948	hypothetical protein				х			ND
	2598_2	gi 71661948	hypothetical protein				х			ND

Enovelamento de p	oroteína								
2649	gi 71650757	heat shock protein	Х	Х	Х			Х	aparece em todos os tempos
2664	gi 71403337	heat shock protein 85	Х	х	х	Х	Х	Х	aparece em todos os tempos
2691	gi 71415505	glucose-regulated protein 78	Х	х	х	х	х	х	ND
2708	gi 205278868	heat shock protein 70	Х	Х	Х	Х	Х	Х	ND
2710	gi 162117	heat shock protein HSP70	Х	Х	Х	Х	Х	Х	ND
2722	gi 205278868	heat shock protein 70	Х			Х	Х	Х	aparece em todos os tempos
2725	gi 205278870	mitochondrial heat shock	Х	Х	Х	Х	Х	х	ND
3004	gi 71415505	glucose-regulated protein 78	х	х	х	х			↓ T4h; aparece nos outros tempos
2657_1	gi 71664854	stress-induced protein sti1			Х				ND
2106_2	gi 71666726	chaperonin				Х			ND
Estrutura celular									
2621	gi 71423325	kinesin	Х	Х	Х	Х			🖡 T4h e Tama
2632	gi 71656336	Kinesin	Х	Х	Х	Х	Х		ND
2839	gi 18568139	beta tubulin 1.9	х		Х				aparece em todos os tempos
2861	gi 71656281	beta tubulin	Х	Х	Х	Х	Х	Х	aparece em todos os tempos
3181	gi 71416460	actin	х	Х	Х	Х	Х		T½h, T1h, T2h, T4h desaparece no Tama
1768_0,5	gi 1220547	beta tubulin		Х					ND
2618_1	gi 71415533	paraflagellar rod protein 3			Х				ND
3131_1	gi 71415533	paraflagellar rod protein 3			Х				ND
3040	gi 71425779	I/6 autoantigen	Х	х	х				aparece em todos os tempos, menos Tama
3312	gi 71425779	I/6 autoantigen	Х	Х					aparece em todos os tempos, menos Tama
Metabolismo									
2734	gi 71666782	2,3-bisphosphoglycerate- independent phosphoglycerate mutase	х	х	х	Х	х	х	ND

Metabo	lismo ácidos	nucléicos								
	1771_0,5	gi 71407175	mitochondrial RNA binding protein		Х					ND
	2678_2	gi 71664952	RNA-binding protein				Х			ND
	3230	gi 71416210	adenylate kinase	Х	Х	Х	Х			aparece em todos os tempos
Metabo	lismo amino	ácidos								
	2865	gi 71404075	asparagine synthetase A	Х	Х	Х	Х	Х	Х	aparece em todos os tempos
	1562_0,5	gi 71421977	seryl-tRNA synthetase		Х					ND
Metabo	lismo de car	boidratos								
	2903	gi 71422448	glyceraldehyde 3-phosphate dehydrogenase	Х	х	Х	х	х	Х	ND
	2906	gi 71422448	glyceraldehyde 3-phosphate dehydrogenase	х		х	Х	х		ND
	2968	gi 71420903	pyruvate dehydrogenase E1 beta subunit enoyl-CoA	Х			Х	Х	Х	aparece em todos os tempos
	2837	gi 71420280	hydratase/isomerase family protein	Х	х	Х	Х	х	Х	aparece em todos os tempos
	1733_0,5	gi 71411394	fructose-bisphosphate aldolase, glycosomal		х					ND
	1832_0,5	gi 71411196	glucosamine-6-phosphate isomerase		х					ND
	1854_0,5	gi 71422938	glucosamine-6-phosphate isomerase		Х					ND
	3214_1	gi 71414543	fructose-bisphosphate aldolase, glycosomal			Х				ND
	2209_2	gi 71665461	enolase				Х			ND
	1224_4	gi 71659757	isocitrate dehydrogenase					Х		ND
Metabo	lismo de pro	oteína								
	2891	gi 71405894	tryptophanyl-tRNA synthetase	Х	Х	Х	Х	Х	Х	aparece em todos os tempos
	2951_1	gi 71413338	pyridoxal kinase			Х				ND

Patogênes	se									
	2626	gi 71662790	trans-sialidase	Х	Х	Х	Х	Х		ND
	3017	gi 71666104	mucin-associated surface protein (MASP)	Х	х	Х	Х			aparece em todos os tempos
	3041	gi 71666104	mucin-associated surface protein (MASP)	Х	Х	Х	Х		Х	ND
	1930_A	gi 71666104	mucin-associated surface protein						Х	ND
Proteólise	2									
	2640	gi 71666278	calpain-like cysteine peptidase	Х	х	х	х	х	х	ND
	2652	gi 71401694	cytoskeleton-associated protein CAP5.5	Х	х	Х	х	х	х	ND
	2653	gi 71401694	cytoskeleton-associated protein CAP5.5	Х	х	Х	х	х		ND

ND = não definido; **↓** diminuição na intensidade do *spot* ^a*Spot*, número corresponde a proteína identificada indicado nas figuras 25, 26, 27, 28, 29 e 30. ^bTempos nos quais os parasitos foram coletados

De acordo com os resultados encontrados na Tabela 10, pode-se concluir que a variação do perfil de proteínas fosforiladas não apresenta correlação direta com o perfil dos géis corados com nitrato de prata.

De acordo com a análise estatística, 9 spots apresentaram diferença de expressão na ANOVA (Tabela 11). Desse total, apenas 4 proteínas foram identificadas (Figura 33.). Não foi possível identificar as proteínas correspondentes aos outros 5 spots (Figura 34). A variação das porcentagens de volume dos *spots* presentes na Tabela 11 também podem ser observadas nas figuras 31 e 32.

Tabela 11. Comparação da expressão protéica nos diferentes tempos de coleta do parasito

Crot ^a			média %	ሬV ^b ± dp			_	m veler ^c	Fd	
Spot	Т0	T ½	T1	Т2	Τ4	Tama	1	p-valor	E	
2621*	0,45±0,06	0,33±0,06	0,24±0,04	0,1±0,01	-	-	19,86	0,037	T0>T0,5	
2695	0,44±0,08	0,57±0,05	0,26±0,04	0,45±0,07	0,39±0,08	0,21±0,01	12,28	0,032	T0>T4	
2708*	0,31±0,02	0,21±0,01	0,66±0,07	0,20±0,02	0,36±0,29	0,26±0,05	3,51	0,006	T0>T2	
2837*	0,36±0,01	0,32±0,02	0,37±0,03	0,24±0,10	0,20±0,09	0,11±0,002	6,35	0,084	T0h>A	
2873	0,07±0,01	0,27±0,03	-	0,14±0,11	0,28±0,01	0,86±0,10	45,67	0,057	T2 <ama< td=""></ama<>	
2944	0,04±0,002	0,03±0,001	-	-	-	-	9,37	0,068	T0>T0,5	
3034	0,04±0,03	0,1±0,01	0,12±0,03	-	-	-	19,03	0,062	T0 <t1< td=""></t1<>	
3069*	0,21±0,01	0,07±0,02	-	-	-	0,12±0,02	35	0,07	T0,5 <ama< td=""></ama<>	
3096	0,37±0,001	0,36±0,02	0,17±0,11	0,10±0,08	0,12±0,004	0,21±0,14	4,08	0,099	T0>T4	

^a *Spot*, número corresponde a proteína identificada. ^b V, volume

^c*p*-valor, nível de significância ^dE, expressão diferencial entre os tempos

*proteínas identificadas (Figura 33)

Figura 31. Média ± desvio padrão das porcentagens de volume dos *spots* (Tabela 11) identificado em cada tempo de coleta.

Figura 32. Média ± desvio padrão das porcentagens de volume dos *spots* (Tabela 11) em cada tempo de coleta.

Figura 33. Zoom dos *spots* que apresentaram diferença de expressão entre os tempos de diferenciação obtidos por meio do *software ImageMaster 2D Platinum 6.0* (GE Healthcare). *Spots* identificados por PMF e/ou MSMS. Cada par apresenta o número do *spot* com o nome da proteína e número de acesso NCBI (gi).

Figura 34. Zoom dos *spots* que apresentaram diferença de expressão entre os tempos de diferenciação obtidos por meio do *software ImageMaster 2D Platinum 6.0* (GE Healthcare). Cada par apresenta o número do *spot* com o nome da proteína e número de acesso NCBI (gi).

A maior parte das fosfoproteínas identificadas, 29%, apresentam função metabólica, sendo que desse total 16% pertencem ao metabolismo de carboidratos seguido do metabolismo de áminoacidos/proteínas e ácidos nucléicos (Figura 35). Isso reflete a necessidade do aumento da atividade metabólica para realizar a transformação celular. Do total de proteínas identificadas, 24% foram proteínas classificadas hipotéticas de função desconhecida, isto é, proteínas que deixaram de apresentar apenas uma seqüencia teórica obtida por meio do gene para serem identificadas a partir da digestão dos *spots* no gel como proteínas reais, porém com função ainda definida, mesmo assim algumas destas proteínas hipotéticas quando analisadas no banco de dados por busca do tipo BLASTp apresentaram algum domínio de outras proteínas, tais como, *Leucine-rich repeats, SPRY, GMP-PDE delta subunit, GGCT-like domains, WD40 domain* e *GRAM domain*.

Das proteínas identificadas, 16% são classificadas como proteínas de choque térmico, que estão envolvidas no enovelamento de proteínas

impedindo as interações indesejadas da cadeia polipeptídica nascente. Tal processo utiliza ciclos repetitivos de liga e desliga ao substrato, sendo dependente de ATP. Algumas dessas proteínas são expressas apenas sob condições de estresse, enquanto outras estão presentes em condições celulares normais de crescimento e não são termo induzidas. Estas proteínas podem ser encontradas em diferentes compartimentos celulares como núcleo, mitocôndria e citosol (Bukau & Horwich, 1998). Cinetoplastideos possuem membros de todas familias de HSP e, principalmente, um importante número dos membros das familias das HSP70, HSP60 e HSP40, sugerindo que elas têm papéis chaves na biologia dos parasitos (Folgueira & Requena, 2007). Análises proteômicas durante a diferenciação da Leishmania donovani e do Trypanosoma cruzi já mostraram um aumento da síntese de algumas HSP (Bente et al., 2003; Paba et al., 2004b). No entanto, ainda não está claro se a expressão de HSPs é parte do processo de diferenciação ou se é um epifenômeno envolvido na adaptação às novas condições de vida e a mudança de temperatura (Folgueira & Reguena, 2007).

Proteínas estruturais correspondem a 16% das proteínas identificadas. Dentre elas encontram-se: beta-tubulina, actina, proteínas paraflagelares e cinesinas. A actina é o componente principal dos microfilamentos, alguns autores sugerem que a actina do citoesqueleto é um facilitador para a invasão do *T. cruzi* (Kipnis *et al.*, 1979; Burleigh & Andrews, 1995; Mortara *et al.*, 2008), enquanto que outros acreditam que a actina inibe a internalização do parasito (Nogueira & Cohn, 1976; Meirelles *et al.*, 1982). Cinesinas são proteínas motoras encontradas em várias células eucarióticas. As betas-tubulinas envolvem parte do corpo celular do parasito. A proteína *l*/6 autoantígeno é uma proteína associada a microtúbulo codificada por um único gene, sendo um polipeptídeo de 33 kDa e inclui um domínio de seis aminoácidos repetitivos arranjados em *tandem* (Gaertig *et al.*, 1995). Essa proteína foi encontrada fosforilada apenas nos primeiros tempos de diferenciação (Tabela 10), isto é, apenas na forma tripomastigota. Resultado semelhante foi encontrado por Guércio *et. al.* (2009).

As proteínas paraflagelares são formadas por um complexo arranjo de filamentos de diferentes espessuras (25 e 70 nm) que se encontram conectados, via pontes especiais, aos pares de microtúbulos 4 e 7 do

axonema (Souza, 2010). Observa-se na Tabela 10, que todas as proteínas estruturais identificadas são desfosforiladas após o parasito se diferenciar em amastigota, com exceção do *spot* 2861. Esse fato reflete provalvelmente a ativação por fosforilação das proteínas estruturais envolvidas na transformação morfológica, com as proteínas de tráfego celular relacionado ao aumento da atividade metabólica. Esse fato reflete também a presença de proteínas flagelares da forma tripomastigota que vão ser desfosforiladas e assim desativadas no fim da diferenciação na forma amastigota que não possui um flagelo exteriorizado.

A triparedoxina peroxidase, *spot* 3069, aparece nos tempos 0; ½ h e em amastigota (Tabela 10). Essa enzima está envolvida na adaptação ao estresse adaptativo apresentando assim um importante papel no sistema de defesa do parasita, atualmente vem sendo estudada como um novo alvo para a quimioterapia da doença de Chagas (Dias *et al.*, 2009).

A proteína seril-tRNA sintetase foi identificada como sendo exclusivamente fosforilada no tempo ½h de diferenciação. Esta proteína é uma aminoacil-tRNA sintetase de classe II que contém o domínio do sítio ativo, característico desta família de enzimas, responsável pela incorporação de serina e selenocisteína nas proteínas do *T. cruzi* (Geslain *et al.*, 2006). A asparagina sintetase A foi encontrada fosforilada em todos os tempos ao longo da diferenciação (Tabela 10). Essa enzima catalisa a conversão reversível de aspartato em asparagina, sabe-se que o aspartato induz o processo de metaciclogênese (diferenciação da forma epimastigota em tripomastigota) (Canepa *et al.*, 2005). Até 2005, essa enzima não havia sido identificada no metabolismo de aminoácidos de *T. cruzi*, pois acreditava-se que a asparagina poderia ser oxidada por meio da via do aspartato (Silber *et al.*, 2005).

Algumas das proteínas identificadas nesse trabalho, tais como, betatubulina, cinesina, *trans*-sialidase, proteínas paraflagelares, autoantígeno I/6, e piruvato desidrogenase (subunidade alfa E1) foram também identificadas no fosfoproteoma de epimastigota usando estratégia de LC-MS/MS (Nakayasu *et al.*, 2009a). Ao contrário do resultado encontrado neste trabalho, Nakayasu e colaboradores (2009a) não identificaram nenhuma HSPs. Com isso, o presente trabalho sugere o fato de que as HSPs possam estar relacionadas com a diferenciação do parasito e também confirma a idéia de que as diferentes abordagens proteômicas podem fornecer resultados complementares.

6.1. Conclusões

A média do número de *spots* fosforilados dos géis 2-DE durante a amastigogênese foi 573, o que representa uma quantidade relevante quando comparado ao número de *spots* dos géis corados com nitrato de prata. Esse resultado confirma o fato de aproximadamente 30% do total de proteínas presentes em células eucarióticas apresentarem fosforilação em determinado momento do ciclo celular.

As variações do perfil de proteínas fosforiladas durante a amastigogênese não apresentou correlação direta com os perfis dos géis corados com nitrato de prata e, consequentemente, com as variações nas concentrações de proteínas.

Poucos *spots* que foram identificados apresentaram fosforilação nos digestos como modificação variável, podendo o sinal ter sido suprimido pelos peptídeos não fosforilados.

A cascata de sinalização celular por proteínas cinases e fosfatases apresentam um importante papel na fisiologia do *T. cruzi*, incluindo mobilidade, metabolismo, infectividade, transporte de íons, diferenciação e sobrevivência. Algumas proteínas com essas características, como as cinesinas, *trans*-sialidases, tubulinas e enzimas da via glicolítica foram identificadas nesse trabalho, mostrando assim a eficiência da técnica usada para detectar fosfoproteínas.

7. Bibliografia

Aebersold R & Goodlett D R. Mass spectrometry in proteomics. *Chem Rev.* v. 101 n. 2, p. 269-95. 2001.

Alphey M S, Bond C S, Tetaud E, Fairlamb A H & Hunter W N. The structure of reduced tryparedoxin peroxidase reveals a decamer and insight into reactivity of 2Cys-peroxiredoxins. *J Mol Biol.* v. 300 n. 4, p. 903-16. 2000.

Anderson N L, Matheson A D & Steiner S. Proteomics: applications in basic and applied biology. *Curr Opin Biotechnol.* v. 11 n. 4, p. 408-12. 2000.

Andrade A C. *Microscopia de força atômica associada à espectrometria de massa na caracterização de proteínas*. 69 p. Dissertação de Mestrado - Biologia Molecular, Universidade de Brasília, Brasília. 2006.

Andrade H M, Murta S M, Chapeaurouge A, Perales J, Nirde P & Romanha A J. Proteomic analysis of *Trypanosoma cruzi* resistance to Benznidazole. *J Proteome Res.* v. 7 n. 6, p. 2357-67. 2008.

Andrews N W & Colli W. Adhesion and interiorization of *Trypanosoma cruzi* in mammalian cells. *J Protozool.* v. 29 n. 2, p. 264-9. 1982.

Atwood J A, 3rd, Minning T, Ludolf F, Nuccio A, Weatherly D B, Alvarez-Manilla G, Tarleton R & Orlando R. Glycoproteomics of *Trypanosoma cruzi* trypomastigotes using subcellular fractionation, lectin affinity, and stable isotope labeling. *J Proteome Res.* v. 5 n. 12, p. 3376-84. 2006.

Atwood J A, 3rd, Weatherly D B, Minning T A, Bundy B, Cavola C, Opperdoes F R, Orlando R & Tarleton R L. The *Trypanosoma cruzi* proteome. *Science*. v. 309 n. 5733, p. 473-6. 2005.

Avila A R, Dallagiovanna B, Yamada-Ogatta S F, Monteiro-Goes V, Fragoso S P, Krieger M A & Goldenberg S. Stage-specific gene expression during *Trypanosoma cruzi* metacyclogenesis. *Genet Mol Res.* v. 2 n. 1, p. 159-68. 2003.

Bakker B M, Michels P A, Opperdoes F R & Westerhoff H V. What controls glycolysis in bloodstream form Trypanosoma brucei? *J Biol Chem.* v. 274 n. 21, p. 14551-9. 1999.

Bakker B M, Westerhoff H V, Opperdoes F R & Michels P A. Metabolic control analysis of glycolysis in trypanosomes as an approach to improve selectivity and effectiveness of drugs. *Mol Biochem Parasitol.* v. 106 n. 1, p. 1-10. 2000.

Barrett M P & Gilbert I H. Perspectives for new drugs against trypanosomiasis and leishmaniasis. *Curr Top Med Chem.* v. 2 n. 5, p. 471-82. 2002.

Beausoleil S A, Jedrychowski M, Schwartz D, Elias J E, Villen J, Li J, Cohn M A, Cantley L C & Gygi S P. Large-scale characterization of HeLa cell nuclear phosphoproteins. *Proc Natl Acad Sci U S A*. v. 101 n. 33, p. 12130-5. 2004.

Bente M, Harder S, Wiesgigl M, Heukeshoven J, Gelhaus C, Krause E, Clos J & Bruchhaus I. Developmentally induced changes of the proteome in the protozoan parasite Leishmania donovani. *Proteomics.* v. 3 n. 9, p. 1811-29. 2003.

Berkelman T & Stensted T. 2-D Electrophoresis Using Immobilized pH Gradients: Principles and Methods. Amersham Pharmacia Biotech. 1998.

Berriman M, et al. The genome of the African trypanosome *Trypanosoma brucei*. *Science*. v. 309 n. 5733, p. 416-22. 2005.

Bestetti R B, Martins C A & Cardinalli-Neto A. Justice where justice is due: A posthumous Nobel Prize to Carlos Chagas (1879-1934), the discoverer

of American Trypanosomiasis (Chagas' disease). *Int J Cardiol.* v. 134 n. 1, p. 9-16. 2009.

Bilate A M, Teixeira P C, Ribeiro S P, Brito T, Silva A M, Russo M, Kalil J & Cunha-Neto E. Distinct outcomes of *Trypanosoma cruzi* infection in hamsters are related to myocardial parasitism, cytokine/chemokine gene expression, and protein expression profile. *J Infect Dis.* v. 198 n. 4, p. 614-23. 2008.

Blum H, Beier H & Gross H. Improved silver staining of plant-proteins, RNA and DNA in polyacrilamide gels. *Electrophoresis*. v. 8 n., p. 93-99. 1987.

Brenchley R, Tariq H, McElhinney H, Szoor B, Huxley-Jones J, Stevens R, Matthews K & Tabernero L. The TriTryp phosphatome: analysis of the protein phosphatase catalytic domains. *BMC Genomics*. v. 8 n., p. 434. 2007.

Bringaud F, Riviere L & Coustou V. Energy metabolism of trypanosomatids: adaptation to available carbon sources. *Mol Biochem Parasitol.* v. 149 n. 1, p. 1-9. 2006.

Briones M R, Souto R P, Stolf B S & Zingales B. The evolution of two *Trypanosoma cruzi* subgroups inferred from rRNA genes can be correlated with the interchange of American mammalian faunas in the Cenozoic and has implications to pathogenicity and host specificity. *Mol Biochem Parasitol.* v. 104 n. 2, p. 219-32. 1999.

Brisse S, Barnabe C & Tibayrenc M. Identification of six *Trypanosoma cruzi* phylogenetic lineages by random amplified polymorphic DNA and multilocus enzyme electrophoresis. *Int J Parasitol.* v. 30 n. 1, p. 35-44. 2000.

Bruschi M, Musante L, Candiano G, Ghiggeri G M, Herbert B, Antonucci F & Righetti P G. Soft immobilized pH gradient gels in proteome analysis: a follow-up. *Proteomics*. v. 3 n. 6, p. 821-5. 2003.

Bukau B & Horwich A L. The Hsp70 and Hsp60 chaperone machines. *Cell.* v. 92 n. 3, p. 351-66. 1998.

Burleigh B A & Andrews N W. The mechanisms of *Trypanosoma cruzi* invasion of mammalian cells. *Annu Rev Microbiol.* v. 49 n., p. 175-200. 1995.

Candiano G, Musante L, Bruschi M, Ghiggeri G M, Herbert B, Antonucci F & Righetti P G. Two-dimensional maps in soft immobilized pH gradient gels: a new approach to the proteome of the Third Millennium. *Electrophoresis*. v. 23 n. 2, p. 292-7. 2002.

Canepa G E, Bouvier L A, Urias U, Miranda M R, Colli W, Alves M J & Pereira C A. Aspartate transport and metabolism in the protozoan parasite *Trypanosoma cruzi. FEMS Microbiol Lett.* v. 247 n. 1, p. 65-71. 2005.

Cardoso J, Soares M J, Menna-Barreto R F, Le Bloas R, Sotomaior V, Goldenberg S & Krieger M A. Inhibition of proteasome activity blocks *Trypanosoma cruzi* growth and metacyclogenesis. *Parasitol Res.* v. 103 n. 4, p. 941-51. 2008.

Charneau S, Junqueira M, Costa C M, Pires D L, Bussacos A C, Sousa M V, Ricart C A O, Shevchenko A & Teixeira A R L. The saliva proteome of the blood-feeding insect *Triatoma infestans* is rich in platelet-aggregation inhibitors. *Int J Mass Spectrom.* v. 268 n., p. 265-276. 2007.

Clark G C & Taylor M J. Tumor necrosis factor involvement in the toxicity of TCDD: the role of endotoxin in the response. *Exp Clin Immunogenet.* v. 11 n. 2-3, p. 136-41. 1994.

Clayton C E. Life without transcriptional control? From fly to man and back again. *EMBO J.* v. 21 n. 8, p. 1881-8. 2002.

Clayton C E & Michels P. Metabolic compartmentation in African trypanosomes. *Parasitol Today*. v. 12 n. 12, p. 465-71. 1996.

Cohen P. Signal integration at the level of protein kinases, protein phosphatases and their substrates. *Trends Biochem Sci.* v. 17 n. 10, p. 408-13. 1992.

Contreras V T, Navarro M C, De Lima A R, Arteaga R, Duran F, Askue J & Franco Y. Production of amastigotes from metacyclic trypomastigotes of *Trypanosoma cruzi. Mem Inst Oswaldo Cruz.* v. 97 n. 8, p. 1213-20. 2002.

Cordero E M, Nakayasu E S, Gentil L G, Yoshida N, Almeida I C & da Silveira J F. Proteomic analysis of detergent-solubilized membrane proteins from insect-developmental forms of *Trypanosoma cruzi*. *J Proteome Res.* v. 8 n. 7, p. 3642-52. 2009.

Costa C M. Análise Proteômica das Saliva dos Triatomíneos Rhodnius brethesi, Rhodnius robustus e Panstrongylus megistus, Vetores da Doença de Chagas. 78 p. Dissertação de Mestrado - Biologia Celular, Universidade de Brasília, Brasília. 2009.

Cuervo P, de Jesus J B, Junqueira M, Mendonca-Lima L, Gonzalez L J, Betancourt L, Grimaldi G, Jr., Domont G B, Fernandes O & Cupolillo E. Proteome analysis of Leishmania (Viannia) braziliensis by two-dimensional gel electrophoresis and mass spectrometry. *Mol Biochem Parasitol.* v. 154 n. 1, p. 6-21. 2007.

Cuervo P, Domont G B & De Jesus J B. Proteomics of trypanosomatids of human medical importance. *J Proteomics*. v. n., p. 2010. Cuevas I C, Rohloff P, Sanchez D O & Docampo R. Characterization of farnesylated protein tyrosine phosphatase TcPRL-1 from *Trypanosoma cruzi*. *Eukaryot Cell*. v. 4 n. 9, p. 1550-61. 2005.

Cunha-e-Silva N, Sant'Anna C, Pereira M G, Porto-Carreiro I, Jeovanio A L & de Souza W. Reservosomes: multipurpose organelles? *Parasitol Res.* v. 99 n. 4, p. 325-7. 2006.

Cunha-e-Silva N L, Atella G C, Porto-Carreiro I A, Morgado-Diaz J A, Pereira M G & De Souza W. Isolation and characterization of a reservosome fraction from *Trypanosoma cruzi*. *FEMS Microbiol Lett*. v. 214 n. 1, p. 7-12. 2002.

Cunha R B. Caracterização e sequenciamento de peptídeos e proteínas por espectrometria de massa. Tese de Doutorado - Biologia Celular, Universidade de Brasília, Brasília. 2003.

de Castro S L. The challenge of Chagas' disease chemotherapy: an update of drugs assayed against *Trypanosoma cruzi*. *Acta Trop*. v. 53 n. 2, p. 83-98. 1993.

de Souza W. Cell biology of *Trypanosoma cruzi*. *Int Rev Cytol.* v. 86 n., p. 197-283. 1984.

Dhiman M, Nakayasu E S, Madaiah Y H, Reynolds B K, Wen J J, Almeida I C & Garg N J. Enhanced nitrosative stress during *Trypanosoma cruzi* infection causes nitrotyrosine modification of host proteins: implications in Chagas' disease. *Am J Pathol.* v. 173 n. 3, p. 728-40. 2008.

Dias L C, Dessoy M A, Silva J J N, Thiemann O H, Oliva G & Andricopulo A D. Quimioterapia da doença de Chagas: Estado da arte e perspectivas no desenvolvimento de novos fármacos. *Quimica Nova.* v. XY n. 0, p. 1-14. 2009.

DNDi. Drugs for neglected diseases initiative. Disponível em: http://www.dndi.org/diseases/chagas.html.

Docampo R & Moreno S N. Free radical metabolism of antiparasitic agents. *Fed Proc.* v. 45 n. 10, p. 2471-6. 1986.

Doerig C. Protein kinases as targets for anti-parasitic chemotherapy. *Biochim Biophys Acta.* v. 1697 n. 1-2, p. 155-68. 2004.

Duszenko M & Mecke D. Inhibition of glyceraldehyde-3-phosphate dehydrogenase by pentalenolactone in Trypanosoma brucei. *Mol Biochem Parasitol.* v. 19 n. 3, p. 223-9. 1986.

El-Sayed N M, et al. The genome sequence of *Trypanosoma cruzi*, etiologic agent of Chagas disease. *Science*. v. 309 n. 5733, p. 409-15. 2005a.

El-Sayed N M, et al. Comparative genomics of trypanosomatid parasitic protozoa. *Science*. v. 309 n. 5733, p. 404-9. 2005b.

Ersfeld K, Barraclough H & Gull K. Evolutionary relationships and protein domain architecture in an expanded calpain superfamily in kinetoplastid parasites. *J Mol Evol.* v. 61 n. 6, p. 742-57. 2005.

Feder M E & Hofmann G E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. *Annu Rev Physiol.* v. 61 n., p. 243-82. 1999.

Ferella M, Nilsson D, Darban H, Rodrigues C, Bontempi E J, Docampo R & Andersson B. Proteomics in *Trypanosoma cruzi*--localization of novel proteins to various organelles. *Proteomics*. v. 8 n. 13, p. 2735-49. 2008.

Ferrari I, *et al.* Towards the physical map of the *Trypanosoma cruzi* nuclear genome: construction of YAC and BAC libraries of the reference clone T. cruzi CL-Brener. *Mem Inst Oswaldo Cruz.* v. 92 n. 6, p. 843-52. 1997.

Folgueira C & Requena J M. A postgenomic view of the heat shock proteins in kinetoplastids. *FEMS Microbiol Rev.* v. 31 n. 4, p. 359-77. 2007.

Frasch A C. Functional diversity in the trans-sialidase and mucin families in *Trypanosoma cruzi*. *Parasitol Today*. v. 16 n. 7, p. 282-6. 2000.

Frevert U, Schenkman S & Nussenzweig V. Stage-specific expression and intracellular shedding of the cell surface trans-sialidase of *Trypanosoma cruzi*. *Infect Immun*. v. 60 n. 6, p. 2349-60. 1992.

Gaertig J, Cruz M A, Bowen J, Gu L, Pennock D G & Gorovsky M A. Acetylation of lysine 40 in alpha-tubulin is not essential in Tetrahymena thermophila. *J Cell Biol.* v. 129 n. 5, p. 1301-10. 1995.

Garcia E & De Azambuja P. Fisiologia de triatomíneos: Desenvolvimento, reprodução e interação com o *Trypanosoma cruzi*. In: *Trypanosoma cruzi e Doença de Chagas*. Z. Brener, Z. Andrade and M. Barral-Neto. Rio de Janeiro. v., p. 41-46. 2000.

Geslain R, Aeby E, Guitart T, Jones T E, Castro de Moura M, Charriere F, Schneider A & Ribas de Pouplana L. Trypanosoma seryl-tRNA synthetase is a metazoan-like enzyme with high affinity for tRNASec. *J Biol Chem.* v. 281 n. 50, p. 38217-25. 2006.

Glickman M H & Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. *Physiol Rev.* v. 82 n. 2, p. 373-428. 2002.

Gonzalez J, Cornejo A, Santos M R, Cordero E M, Gutierrez B, Porcile P, Mortara R A, Sagua H, Da Silveira J F & Araya J E. A novel protein

phosphatase 2A (PP2A) is involved in the transformation of human protozoan parasite *Trypanosoma cruzi*. *Biochem J.* v. 374 n. Pt 3, p. 647-56. 2003.

Gorg A, Boguth G, Kopf A, Reil G, Parlar H & Weiss W. Sample prefractionation with Sephadex isoelectric focusing prior to narrow pH range two-dimensional gels. *Proteomics*. v. 2 n. 12, p. 1652-7. 2002.

Gorg A, Postel W & Gunther S. The current state of two-dimensional electrophoresis with immobilized pH gradients. *Electrophoresis*. v. 9 n. 9, p. 531-46. 1988.

Grellier P, Blum J, Santana J, Bylen E, Mouray E, Sinou V, Teixeira A R & Schrevel J. Involvement of calyculin A-sensitive phosphatase(s) in the differentiation of *Trypanosoma cruzi* trypomastigotes to amastigotes. *Mol Biochem Parasitol.* v. 98 n. 2, p. 239-52. 1999.

Guércio R A. Subproteômica de Tryponosoma cruzi: Proteínas ácidas e fração enriquecida em organelas de alta densidade. 102 p. Tese de Doutorado - Biologia Celular, Universidade de Brasília, Brasília. 2009.

Gygi S P & Aebersold R. Mass spectrometry and proteomics. *Curr Opin Chem Biol.* v. 4 n. 5, p. 489-94. 2000.

Halligan B D, Ruotti V, Jin W, Laffoon S, Twigger S N & Dratz E A. ProMoST (Protein Modification Screening Tool): a web-based tool for mapping protein modifications on two-dimensional gels. *Nucleic Acids Res.* v. 32 n. Web Server issue, p. W638-44. 2004.

Hannaert V, Bringaud F, Opperdoes F R & Michels P A. Evolution of energy metabolism and its compartmentation in Kinetoplastida. *Kinetoplastid Biol Dis.* v. 2 n. 1, p. 11. 2003. Harth G, Haidaris C G & So M. Purification and characterization of stage-specific glycoproteins from *Trypanosoma cruzi*. *Mol Biochem Parasitol*. v. 33 n. 2, p. 143-50. 1989.

Harth G, Mills A A, Souto-Padron T & de Souza W. *Trypanosoma cruzi* glycoprotein 72: immunological analysis and cellular localization. *Mol Cell Biochem*. v. 109 n. 1, p. 25-36. 1992.

Helfert S, Estevez A M, Bakker B, Michels P & Clayton C. Roles of triosephosphate isomerase and aerobic metabolism in Trypanosoma brucei. *Biochem J.* v. 357 n. Pt 1, p. 117-25. 2001.

Hoving S, Gerrits B, Voshol H, Muller D, Roberts R C & van Oostrum J. Preparative two-dimensional gel electrophoresis at alkaline pH using narrow range immobilized pH gradients. *Proteomics*. v. 2 n. 2, p. 127-34. 2002.

Hoving S, Voshol H & van Oostrum J. Towards high performance twodimensional gel electrophoresis using ultrazoom gels. *Electrophoresis*. v. 21 n. 13, p. 2617-21. 2000.

Hunter T. The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine: its role in cell growth and disease. *Philos Trans R Soc Lond B Biol Sci.* v. 353 n. 1368, p. 583-605. 1998.

Jiang X S, Tang L Y, Cao X J, Zhou H, Xia Q C, Wu J R & Zeng R. Two-dimensional gel electrophoresis maps of the proteome and phosphoproteome of primitively cultured rat mesangial cells. *Electrophoresis*. v. 26 n. 23, p. 4540-62. 2005.

Jørgensen T J D, Delforge D, Remacle J, Bojesen G & Roepstorff P. Collision-induced dissociation of noncovalent complexes between vancomycin antibiotics and peptide ligand stereoisomers: evidence for molecular recognition in the gas phase. *International Journal of Mass Spectrometry*. v. 188 n. 1-2, p. 63-85. 1999.
Kipnis T L, Calich V L & da Silva W D. Active entry of bloodstream forms of *Trypanosoma cruzi* into macrophages. *Parasitology*. v. 78 n. 1, p. 89-98. 1979.

Kiraga J, Mackiewicz P, Mackiewicz D, Kowalczuk M, Biecek P, Polak N, Smolarczyk K, Dudek M R & Cebrat S. The relationships between the isoelectric point and: length of proteins, taxonomy and ecology of organisms. *BMC Genomics*. v. 8 n., p. 163. 2007.

Landfear S M. Trypanosomatid transcription factors: waiting for Godot. *Proc Natl Acad Sci U S A.* v. 100 n. 1, p. 7-9. 2003.

Lau A T, He Q Y & Chiu J F. Proteomic technology and its biomedical applications. *Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai)*. v. 35 n. 11, p. 965-75. 2003.

Laugesen S, Bergoin A & Rossignol M. Deciphering the plant phosphoproteome: tools and strategies for a challenging task. *Plant Physiol Biochem.* v. 42 n. 12, p. 929-36. 2004.

Lechward K, Awotunde O S, Swiatek W & Muszynska G. Protein phosphatase 2A: variety of forms and diversity of functions. *Acta Biochim Pol.* v. 48 n. 4, p. 921-33. 2001.

Locke V L, Gibson T S, Thomas T M, Corthals G L & Rylatt D B. Gradiflow as a prefractionation tool for two-dimensional electrophoresis. *Proteomics.* v. 2 n. 9, p. 1254-60. 2002.

Low H P & Tarleton R L. Molecular cloning of the gene encoding the 83 kDa amastigote surface protein and its identification as a member of the *Trypanosoma cruzi* sialidase superfamily. *Mol Biochem Parasitol.* v. 88 n. 1-2, p. 137-49. 1997.

Magalhães A D. *Análise Proteômica de Trypanosoma cruzi: construção de mapas bidimensionais em pH alcalino.* 64 p. Dissertação Mestrado - Patologia Molecular, Universidade de Brasília, Brasília. 2006.

Mann M, Hojrup P & Roepstorff P. Use of mass spectrometric molecular weight information to identify proteins in sequence databases. *Biol Mass Spectrom.* v. 22 n. 6, p. 338-45. 1993.

McNulty D E & Annan R S. Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. *Mol Cell Proteomics.* v. 7 n. 5, p. 971-80. 2008.

Medjahed D, Smythers G W, Powell D A, Stephens R M, Lemkin P F & Munroe D J. VIRTUAL2D: A web-accessible predictive database for proteomics analysis. *Proteomics*. v. 3 n. 2, p. 129-38. 2003.

Meirelles M N, Chiari E & de Souza W. Interaction of bloodstream, tissue culture-derived and axenic culture-derived trypomastigotes of *Trypanosoma cruzi* with macrophages. *Acta Trop.* v. 39 n. 3, p. 195-203. 1982.

Michels P A. Compartmentation of glycolysis in trypanosomes: a potential target for new trypanocidal drugs. *Biol Cell.* v. 64 n. 2, p. 157-64. 1988.

Mineki R, Taka H, Fujimura T, Kikkawa M, Shindo N & Murayama K. In situ alkylation with acrylamide for identification of cysteinyl residues in proteins during one- and two-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis. *Proteomics.* v. 2 n. 12, p. 1672-81. 2002.

Moncayo A. Carlos Chagas: Biographical sketch. *Acta Trop.* v. n., p. 2009.

Morales M A, Watanabe R, Laurent C, Lenormand P, Rousselle J C, Namane A & Spath G F. Phosphoproteomic analysis of Leishmania donovani pro- and amastigote stages. *Proteomics*. v. 8 n. 2, p. 350-63. 2008.

Mortara R A, Andreoli W K, Fernandes M C, da Silva C V, Fernandes A B, L'Abbate C & da Silva S. Host cell actin remodeling in response to *Trypanosoma cruzi*: trypomastigote versus amastigote entry. *Subcell Biochem.* v. 47 n., p. 101-9. 2008.

Murta S M, Krieger M A, Montenegro L R, Campos F F, Probst C M, Avila A R, Muto N H, de Oliveira R C, Nunes L R, Nirde P, Bruna-Romero O, Goldenberg S & Romanha A J. Deletion of copies of the gene encoding old yellow enzyme (TcOYE), a NAD(P)H flavin oxidoreductase, associates with in vitro-induced benznidazole resistance in *Trypanosoma cruzi*. *Mol Biochem Parasitol.* v. 146 n. 2, p. 151-62. 2006.

Nakayasu E S, Gaynor M R, Sobreira T J, Ross J A & Almeida I C. Phosphoproteomic analysis of the human pathogen *Trypanosoma cruzi* at the epimastigote stage. *Proteomics*. v. 9 n. 13, p. 3489-506. 2009a.

Nakayasu E S, Yashunsky D V, Nohara L L, Torrecilhas A C, Nikolaev A V & Almeida I C. GPIomics: global analysis of glycosylphosphatidylinositolanchored molecules of *Trypanosoma cruzi*. *Mol Syst Biol*. v. 5 n., p. 261. 2009b.

Naula C, Parsons M & Mottram J C. Protein kinases as drug targets in trypanosomes and *Leishmania*. *Biochim Biophys Acta*. v. 1754 n. 1-2, p. 151-9. 2005.

Navarro M C, De Lima A R, Askue J & Contreras V T. Morphological comparison of axenic amastigogenesis of trypomastigotes and metacyclic forms of *Trypanosoma cruzi*. *Mem Inst Oswaldo Cruz*. v. 98 n. 1, p. 83-91. 2003.

Nett I R, Martin D M, Miranda-Saavedra D, Lamont D, Barber J D, Mehlert A & Ferguson M A. The phosphoproteome of bloodstream form Trypanosoma brucei, causative agent of African sleeping sickness. *Mol Cell Proteomics.* v. 8 n. 7, p. 1527-38. 2009.

Nita-Lazar A, Saito-Benz H & White F M. Quantitative phosphoproteomics by mass spectrometry: past, present, and future. *Proteomics.* v. 8 n. 21, p. 4433-43. 2008.

Nogueira N & Cohn Z. *Trypanosoma cruzi*: mechanism of entry and intracellular fate in mammalian cells. *J Exp Med.* v. 143 n. 6, p. 1402-20. 1976.

O'Farrell P H. High resolution two-dimensional electrophoresis of proteins. *J Biol Chem.* v. 250 n. 10, p. 4007-21. 1975.

Opperdoes F R. Compartmentation of carbohydrate metabolism in trypanosomes. *Annu Rev Microbiol.* v. 41 n., p. 127-51. 1987.

Paba J, Ricart C A, Fontes W, Santana J M, Teixeira A R, Marchese J, Williamson B, Hunt T, Karger B L & Sousa M V. Proteomic analysis of *Trypanosoma cruzi* developmental stages using isotope-coded affinity tag reagents. *J Proteome Res.* v. 3 n. 3, p. 517-24. 2004a.

Paba J, Santana J M, Teixeira A R, Fontes W, Sousa M V & Ricart C A. Proteomic analysis of the human pathogen *Trypanosoma cruzi*. *Proteomics*. v. 4 n. 4, p. 1052-9. 2004b.

Parodi-Talice A, Duran R, Arrambide N, Prieto V, Pineyro M D, Pritsch O, Cayota A, Cervenansky C & Robello C. Proteome analysis of the causative agent of Chagas disease: *Trypanosoma cruzi. Int J Parasitol.* v. 34 n. 8, p. 881-6. 2004.

Parodi-Talice A, Monteiro-Goes V, Arrambide N, Avila A R, Duran R, Correa A, Dallagiovanna B, Cayota A, Krieger M, Goldenberg S & Robello C. Proteomic analysis of metacyclic trypomastigotes undergoing *Trypanosoma cruzi* metacyclogenesis. *J Mass Spectrom*. v. 42 n. 11, p. 1422-32. 2007.

Parsons M, Worthey E A, Ward P N & Mottram J C. Comparative analysis of the kinomes of three pathogenic trypanosomatids: *Leishmania major, Trypanosoma brucei* and *Trypanosoma cruzi. BMC Genomics.* v. 6 n., p. 127. 2005.

Parussini F, Garcia M, Mucci J, Aguero F, Sanchez D, Hellman U, Aslund L & Cazzulo J J. Characterization of a lysosomal serine carboxypeptidase from *Trypanosoma cruzi*. *Mol Biochem Parasitol*. v. 131 n. 1, p. 11-23. 2003.

Perkins D N, Pappin D J, Creasy D M & Cottrell J S. Probability-based protein identification by searching sequence databases using mass spectrometry data. *Electrophoresis*. v. 20 n. 18, p. 3551-67. 1999.

Porto-Carreiro I, Attias M, Miranda K, De Souza W & Cunha-e-Silva N. *Trypanosoma cruzi* epimastigote endocytic pathway: cargo enters the cytostome and passes through an early endosomal network before storage in reservosomes. *Eur J Cell Biol.* v. 79 n. 11, p. 858-69. 2000.

Previato L, Todeschini A R & Previato J O. Macromoléculas -Carboidratos, lipideos e glicoproteinas. Doença de Chagas. Disponível em: <u>http://www.fiocruz.br/chagas/cgi/cgilua.exe/sys/start.htm?sid=79</u>. Data de acesso 28/02/2010.

Raggiaschi R, Gotta S & Terstappen G C. Phosphoproteome analysis. *Biosci Rep.* v. 25 n. 1-2, p. 33-44. 2005.

Ramirez M I, Ruiz Rde C, Araya J E, Da Silveira J F & Yoshida N. Involvement of the stage-specific 82-kilodalton adhesion molecule of *Trypanosoma cruzi* metacyclic trypomastigotes in host cell invasion. *Infect Immun.* v. 61 n. 9, p. 3636-41. 1993.

Reina-San-Martin B, Degrave W, Rougeot C, Cosson A, Chamond N, Cordeiro-Da-Silva A, Arala-Chaves M, Coutinho A & Minoprio P. A B-cell mitogen from a pathogenic trypanosome is a eukaryotic proline racemase. *Nat Med.* v. 6 n. 8, p. 890-7. 2000.

Rosenzweig D, Smith D, Myler P J, Olafson R W & Zilberstein D. Posttranslational modification of cellular proteins during Leishmania donovani differentiation. *Proteomics.* v. 8 n. 9, p. 1843-50. 2008.

Sant'Anna C, Nakayasu E S, Pereira M G, Lourenco D, de Souza W, Almeida I C & Cunha E S N L. Subcellular proteomics of *Trypanosoma cruzi* reservosomes. *Proteomics*. v. 9 n. 7, p. 1782-94. 2009.

Sant'Anna C, Parussini F, Lourenco D, de Souza W, Cazzulo J J & Cunha-e-Silva N L. All *Trypanosoma cruzi* developmental forms present lysosome-related organelles. *Histochem Cell Biol.* v. 130 n. 6, p. 1187-98. 2008.

Saúde M d. Ministério da Saúde. Disponível em: <u>http://portal.saude.gov.br/portal/saude/profissional/visualizar_texto.cfm?idtxt=</u> <u>31454</u>. Data de acesso 11/02/2010.

Schenkman S, Kurosaki T, Ravetch J V & Nussenzweig V. Evidence for the participation of the Ssp-3 antigen in the invasion of nonphagocytic mammalian cells by *Trypanosoma cruzi*. *J Exp Med*. v. 175 n. 6, p. 1635-41. 1992.

Shapiro S S & Wilk M B. An Analysis of Variance Test for Normality (Complete Samples). *Biometrika*. v. 52 n., p. 591-611. 1965.

Sickmann A & Meyer H E. Phosphoamino acid analysis. *Proteomics*. v. 1 n. 2, p. 200-6. 2001.

Silber A M, Colli W, Ulrich H, Alves M J & Pereira C A. Amino acid metabolic routes in *Trypanosoma cruzi*: possible therapeutic targets against Chagas' disease. *Curr Drug Targets Infect Disord*. v. 5 n. 1, p. 53-64. 2005.

Silveira J F. Biologia Molecular do *Trypanosoma cruzi*. In: *Trypanosoma cruzi e Doença de Chagas*. Z. Brener, Z. Andrade and M. Barral-Neto. Rio de Janeiro. v., p. 2000.

Simone S G. O metabolismo. Doença de Chagas. Disponível em: <u>http://www.fiocruz.br/chagas/cgi/cgilua.exe/sys/start.htm?sid=15</u>. Data de acesso 09/03/2010.

Sing C F, Stengard J H & Kardia S L. Dynamic relationships between the genome and exposures to environments as causes of common human diseases. *World Rev Nutr Diet.* v. 93 n., p. 77-91. 2004.

Siuzdak G. Mass Analyzers and Ion Detectors. In: *Mass Spectrometry for Biotechnology*. A. Press. San Diego-Califórnia. v., p. 32-55. 1996.

Soares M J, Souto-Padron T & De Souza W. Identification of a large pre-lysosomal compartment in the pathogenic protozoon *Trypanosoma cruzi*. *J Cell Sci.* v. 102 (Pt 1) n., p. 157-67. 1992.

Sodre C L, Chapeaurouge A D, Kalume D E, de Mendonca Lima L, Perales J & Fernandes O. Proteomic map of *Trypanosoma cruzi* CL Brener: the reference strain of the genome project. *Arch Microbiol.* v. 191 n. 2, p. 177-84. 2009.

Sodré C L, Kalume D E, Silva M E R & Fernandes O. Proteoma.DoençadeChagas.Disponívelem:

http://www.fiocruz.br/chagas/cgi/cgilua.exe/sys/start.htm?sid=15. Data de acesso 28/02/2010.

Souza W. O parasito e sua interação com os hospedeiros. In: *Trypanosoma cruzi e Doença de Chagas*. Z. Brener, Z. Andrade and M. Barral-Neto. Rio de Janeiro. v., p. 2000.

Souza W. Microscopia Eletrônica - Estudo por microscopia eletrônica de transmissão. Doença de Chagas. Disponível em: <u>http://www.fiocruz.br/chagas/cgi/cgilua.exe/sys/start.htm?sid=70</u>. Data de acesso 15/03/2010.

Sylvester D & Krassner S M. Proline metabolism in *Trypanosoma cruzi* epimastigotes. *Comp Biochem Physiol B.* v. 55 n. 3B, p. 443-7. 1976.

Tedford N C, Hall A B, Graham J R, Murphy C E, Gordon N F & Radding J A. Quantitative analysis of cell signaling and drug action via mass spectrometry-based systems level phosphoproteomics. *Proteomics*. v. 9 n. 6, p. 1469-87. 2009.

Teixeira M M & Yoshida N. Stage-specific surface antigens of metacyclic trypomastigotes of *Trypanosoma cruzi* identified by monoclonal antibodies. *Mol Biochem Parasitol.* v. 18 n. 3, p. 271-82. 1986.

Teixeira P C, Iwai L K, Kuramoto A C, Honorato R, Fiorelli A, Stolf N, Kalil J & Cunha-Neto E. Proteomic inventory of myocardial proteins from patients with chronic Chagas' cardiomyopathy. *Braz J Med Biol Res.* v. 39 n. 12, p. 1549-62. 2006.

Teixeira S M, Russell D G, Kirchhoff L V & Donelson J E. A differentially expressed gene family encoding "amastin," a surface protein of *Trypanosoma cruzi* amastigotes. *J Biol Chem.* v. 269 n. 32, p. 20509-16. 1994.

Tomlinson S, Vandekerckhove F, Frevert U & Nussenzweig V. The induction of *Trypanosoma cruzi* trypomastigote to amastigote transformation by low pH. *Parasitology*. v. 110 (Pt 5) n., p. 547-54. 1995.

Tonelli R R, Silber A M, Almeida-de-Faria M, Hirata I Y, Colli W & Alves M J. L-proline is essential for the intracellular differentiation of *Trypanosoma cruzi*. *Cell Microbiol*. v. 6 n. 8, p. 733-41. 2004.

Torres C, Perez-Victoria F J, Parodi-Talice A, Castanys S & Gamarro F. Characterization of an ABCA-like transporter involved in vesicular trafficking in the protozoan parasite Trypanosoma cruzi. *Mol Microbiol.* v. 54 n. 3, p. 632-46. 2004.

Urbina J A. Lipid biosynthesis pathways as chemotherapeutic targets in kinetoplastid parasites. *Parasitology*. v. 114 Suppl n., p. S91-9. 1997.

Valcu C M & Valcu M. Reproducibility of two-dimensional gel electrophoresis at different replication levels. *J Proteome Res.* v. 6 n. 12, p. 4677-83. 2007.

Vanhamme L & Pays E. Control of gene expression in trypanosomes. *Microbiol Rev.* v. 59 n. 2, p. 223-40. 1995.

Venter J C, et al. The sequence of the human genome. Science. v. 291 n. 5507, p. 1304-51. 2001.

Verlinde C L, Hannaert V, Blonski C, Willson M, Perie J J, Fothergill-Gilmore L A, Opperdoes F R, Gelb M H, Hol W G & Michels P A. Glycolysis as a target for the design of new anti-trypanosome drugs. *Drug Resist Updat*. v. 4 n. 1, p. 50-65. 2001.

Vinhaes M C & Dias J C. Chagas disease in Brazil. *Cad Saude Publica*. v. 16 Suppl 2 n., p. 7-12. 2000. Wang Y Y, Cheung P Y, Wong M S & Lo S C. "Two-in-one" gel for spot matching after two-dimensional electrophoresis. *Proteomics*. v. 3 n. 5, p. 580-3. 2003.

Weiller G F, Caraux G & Sylvester N. The modal distribution of protein isoelectric points reflects amino acid properties rather than sequence evolution. *Proteomics.* v. 4 n. 4, p. 943-9. 2004.

White F M. Quantitative phosphoproteomic analysis of signaling network dynamics. *Curr Opin Biotechnol.* v. 19 n. 4, p. 404-9. 2008.

WHO. World Health Organization. Disponível em: <u>http://www.who.int/topics/chagas_disease/en/</u>.

WHO. World Health Organization. Disponível em: <u>http://www.who.int/topics/chagas_disease/en/</u>. Data de acesso 09/02/10.

Wilkins M R, Pasquali C, Appel R D, Ou K, Golaz O, Sanchez J C, Yan J X, Gooley A A, Hughes G, Humphery-Smith I, Williams K L & Hochstrasser D F. From proteins to proteomes: large scale protein identification by twodimensional electrophoresis and amino acid analysis. *Biotechnology (N Y).* v. 14 n. 1, p. 61-5. 1996.

Yamada-Ogatta S F, Motta M C, Toma H K, Monteiro-Goes V, Avila A R, Muniz B D, Nakamura C, Fragoso S P, Goldenberg S & Krieger M A. *Trypanosoma cruzi:* cloning and characterization of two genes whose expression is up-regulated in metacyclic trypomastigotes. *Acta Trop.* v. 90 n. 2, p. 171-9. 2004.

Yates J R, Ruse C I & Nakorchevsky A. Proteomics by mass spectrometry: approaches, advances, and applications. *Annu Rev Biomed Eng.* v. 11 n., p. 49-79. 2009.

Zhang X, Shi L, Shu S, Wang Y, Zhao K, Xu N, Liu S & Roepstorff P. An improved method of sample preparation on AnchorChip targets for MALDI-MS and MS/MS and its application in the liver proteome project. *Proteomics*. v. 7 n. 14, p. 2340-9. 2007.

Zingales B, Pereira M E, Oliveira R P, Almeida K A, Umezawa E S, Souto R P, Vargas N, Cano M I, da Silveira J F, Nehme N S, Morel C M, Brener Z & Macedo A. *Trypanosoma cruzi* genome project: biological characteristics and molecular typing of clone CL Brener. *Acta Trop.* v. 68 n. 2, p. 159-73. 1997.

Zottis A. Planejamento racional de novos agentes quimioterápicos: Identificação e estudos cinéticos de novos inibidores da gliceraldeído-3fosfato desidrogenase glicossomal de Trypanosoma cruzi. 141 p. Tese -Instituto de Física de São Carlos, Universidade de São Paulo, São Paulo. 2009.