UNIVERSIDADE DE BRASÍLIA FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA FLORESTAL

INFLUÊNCIA DAS DIMENSÕES DOS CORPOS-DE-PROVA E DA VELOCIDADE DE ENSAIO NA CARACTERIZAÇÃO DE TRÊS ESPÉCIES DE MADEIRAS TROPICAIS

JULIO EUSTAQUIO DE MELO

ORIENTADOR: ALEXANDRE FLORIAN DA COSTA CO-ORIENTADOR: MÁRIO RABELO DE SOUZA

TESE DE DOUTORADO EM CIÊNCIAS FLORESTAIS

BRASÍLIA, julho de 2010

UNIVERSIDADE DE BRASÍLIA FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA FLORESTAL

INFLUÊNCIA DAS DIMENSÕES DE CORPOS-DE-PROVA E DA VELOCIDADE DE ENSAIO NA CARACTERIZAÇÃO DE TRÊS ESPÉCIES DE MADEIRAS TROPICAIS

JULIO EUSTAQUIO DE MELO Analista Ambiental/LPF/SFB Professor Assistente 2 – FAU/UnB

TESE DE DOUTORADO SUBMETIDA AO DEPARTAMENTO DE ENGENHARIA FLORESTAL, DA FACULDADE DE TECNOLOGIA DA UNIVERSIDADE DE BRASÍLIA, COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR.

APROVADA POR:

Prof. Dr. Alexandre Florian da Costa (Departamento de Engenharia Florestal/UnB) (Orientador)

Prof. Dr. Ailton Teixeira do Valle (Departamento de Engenharia Florestal/UnB) (Examinador Interno)

Prof. Dr. Joaquim Carlos Gonzalez (Departamento de Engenharia Florestal/UnB) (Examinador Interno)

Prof. Dra. Akemi Ino (Departamento de Arquitetura e Urbanismo /EESC/USP) (Examinador Externo)

Prof. Dr. Divino Eterno Teixeira (Laboratório de Produtos Florestais/SFB/MMA) (Examinador Externo)

Prof. Dr. Cláudio Henrique S. Del Menezzi (Departamento de Engenharia Florestal/UnB) (Examinador Suplente)

Brasília, julho de 2010

FICHA CATALOGRÁFICA

Ficha catalográfica elaborada pela Biblioteca Central da Universidade de Brasília

Número de acervo 981186

M528 i

Melo, Julio Eustaquio de Influência das dimensões dos corpos-de-prova e da velocidade de ensaio na caracterização de três espécies de madeiras tropicais / Julio Eustaquio de Mel o. - -2010.

xv, 119 f . : i l . ; 30 cm

Tese (doutorado) - Universidade de Brasília, Departamento de Engenharia Flores ta I., 2010 Inclui bibliografia

1. Madeira - Brasil . 2. Resistência de materiais . 3. Engenharia florestal . I .Costa, Alexandre Florian da. II. Souza, Mário Rabelo de. III. Tí tu I o.

CDU 634. 0.81

REFERÊNCIA BIBLIOGRÁFICA

MELO; J. E. (2010). Influência das dimensões dos corpos-de-prova e da velocidade de ensaio na caracterização de três espécies de madeiras tropicais. Tese de Doutorado em Ciências Florestais, Publicação PPGEFLTD - 016/2010, Departamento de Engenharia Florestal, Universidade de Brasília, Brasília, DF, 2010, 134 p.

CESSÃO DE DIREITOS

AUTOR: Julio Eustaquio de Melo

TÍTULO: Influência das dimensões dos corpos-de-prova e da velocidade de ensaio na caracterização de três espécies de madeiras tropicais.

GRAU: Doutor

ANO: 2010

É concedida à Universidade de Brasília permissão para reproduzir cópias desta tese de doutorado e para emprestar ou vender tais cópias somente para propósitos acadêmicos e científicos. O autor reserva outros direitos de publicação e nenhuma parte desta tese de doutorado pode ser reproduzida sem autorização por escrito do autor.

Aos meus pais, Julio Londe de Melo (in memorian) e Amélia Rodrigues Londe, pelo amor e exemplo de vida que muito contribuíram para a minha formação.

A minha esposa, Elida M. D. Bueno de Melo, e aos meus filhos Leonardo e Alice, pelo amor, carinho e apoio que sempre recebi.

Dedico este trabalho.

AGRADECIMENTO

O autor manifesta os seus sinceros agradecimentos ao professor Dr. Alexandre Florian da Costa e Mário Rabelo de Souza por suas valiosas orientações, pelo estímulo, pelo apoio, amizade e compreensão durante todo o decorrer do curso e deste trabalho.

Ao professor Dr. Ildeu Soares Martins pelas valiosas contribuições, sugestões e apoio na análise estatística dos dados do trabalho.

Ao Pesquisador Dr. Divino Eterno Teixeira pelas valiosas contribuições, sugestões e apoio na análise estatística dos dados do trabalho.

Ao Prof. Dr. Ailton Teixeira do Vale pelo apoio e incentivo no Departamento da Engenharia Florestal.

Ao técnico João Evangelista Anacleto, pela paciência, dedicação e honestidade no trato com a metodologia de realização dos ensaios.

Aos funcionários, colegas e amigos do Laboratório de Produtos Florestais que colaboraram com o apoio, a compreensão e ajuda para vencer as dificuldades encontradas.

Ao curso de Pós-Graduação em Ciências Florestais da Universidade de Brasília, pela oportunidade e incentivo na consecução do programa de doutorado.

À minha família, meus pais, minhas irmãs, aos amigos, pelo carinho, compreensão, motivação, estímulo e colaboração manifestados durante a realização deste trabalho.

RESUMO

INFLUÊNCIA DAS DIMENSÕES DOS CORPOS-DE-PROVA E DA VELOCIDADE DE ENSAIO NA CARACTERIZAÇÃO DE TRÊS ESPÉCIES DE MADEIRAS TROPICAIS

Autor: Julio Eustaquio de Melo

Orientador: Alexandre Florian da Costa co-orientador: Mário Rabelo de Souza

Programa de Pós-graduação em Engenharia Florestal

Este trabalho aborda a influência de diferentes velocidades de ensaios e dimensões de corpos-de-prova isentos de defeito na determinação da resistência mecânica de espécies de madeiras brasileiras. A sua importância está na possibilidade de estabelecer metodologias de caracterização, com menores dimensões de corpos-de-prova e maiores velocidades de ensaios, resultando em ganho de tempo e economia nos custos de transporte, sem perda de qualidade e de precisão nos resultados. Na revisão bibliográfica sobre o tema, fica clara a preocupação com a diminuição da resistência da madeira ao longo do tempo, porque envolve a questão da segurança estrutural. Tradicionalmente, ensaios para pequenas variações de velocidades e dimensões nos corpos-de-prova foram pouco abordados, possivelmente pela falta de interesse em alterar metodologias já consagradas. A metodologia utilizada envolve ensaios de flexão estática, compressão paralela às fibras e cisalhamento paralelo às fibras, com teor de umidade a 12%, cinco dimensões de corpos-de-prova e três velocidades de ensaios, respectivamente. Foram caracterizadas as espécies cumaru (Dipterix odorata), jequitibá (Allantoma lineata) e quaruba (Vochyisia guianensis). As referências de dimensões e velocidades foram selecionadas com base na norma pan americana COPANT 555/73, 463/73 e 464/72. Tais normas estabelecem procedimentos para determinação das propriedades físicas e mecânicas de espécies de madeiras com pequenos corpos-de-prova isentos de defeitos. Os resultados obtidos mostram que houve influência da dimensão nos ensaios de determinação das propriedades mecânicas das espécies caracterizadas. A velocidade teve influência, somente na resistência a compressão paralela às fibras.

Palavras-chave: Propriedades Mecânicas, Velocidade de Ensaios, Dimensões de Corposde-prova

ABSTRACT

INFLUENCE OF SPECIMEN SIZE AND SPEED OF TEST IN CHARACTERIZATING THREE SPECIES OF TROPICAL TIMBERS

Author: Julio Eustaquio de Melo Advision: Alexandre Florian da Costa Co-Advision: Mário Rabelo de Souza Graduate Program in Forestry Engineering

This paper studies the influence of different test speeds and sizes of clear specimen in the determination mechanical strength of Brazilian wood species. Its importance lies in the possibility of establishing methods of characterization using specimens of smaller dimensions at higher speeds tests, what results in gain of time and economy in transportation costs, with no loss of quality or precision as far as the results are concerned. After a subject literature review the concern about the decrease in wood strength over time became clear, because of its relations with structural safety. Traditionally, tests for small speed and size variations in the specimens have been little studied, what might be explained by the lack of interest in changing long-time established methodologies. The methodology involves bending tests, compression parallel to the grain and shear parallel to the grain at 12% of moisture content, five dimensions and three different speeds respectively. Species characterized were cumaru (Dipterix odorata), jequitibá (Allantoma lineata) and quaruba (Vochyisia guianensis). The size and speed references were selected based on the Pan American Standard – COPANT 555/73, 463/73 e 464/72. Such methods establish procedures to determinate the physical and mechanical properties of wood species with small clear specimens. The results showed a significant influence of size in the tests for determining the mechanical properties of the species featured. The speed had an influence only in compressive strength parallel to grain.

Key worlds: Mechanical Properties, Test Speed, Specimens Dimension

SUMÁRIO

AGRADECIMENTOS	V
RESUMO	vi
ABSTRACT	vii
SUMÁRIO	viii
LISTA DE TABELAS	xi
LISTA DE FIGURAS	xiv
1 - INTRODUÇÃO	1
1.1 - Generalidades	1
1.2 - Justificativa	2
1.3 - Hipótese de trabalho	3
1.4 - Objetivo	3
1.4.1 - Objetivo geral	3
1.4.2 - Objetivos específicos	3
2 - REVISÃO DE LITERATURA	4
2.1 - Ensaios de caracterização	5
2.1.1 - Tração paralela às fibras	5
2.1.2 - Tração perpendicular às fibras	6
2.1.3 - Compressão paralela às fibras	7
2.1.4 - Flexão estática	7
2.1.5 - Compressão perpendicular às fibras	8
2.1.6 - Cisalhamento paralelo às fibras	8
2.1.7 - Dureza	9
2.1.8 - Fendilhamento	10
2.1.9 - Resistência ao impacto	10
2.2 - Influência da dimensão do corpo-de-prova e da velocidade de ensaio na caracterização física e mecânica de espécies de madeira	10

2.3 - Tamanho da amostra	17
2.4 - Correção dos resultados de ensaios de caracterização mecânica	19
3 - MATERIAIS E MÉTODOS	22
3.1 - Ensaios exploratórios	23
3.1.1 - Ensaios exploratórios 1	23
3.1.2 - Ensaios exploratórios 2	27
3.2 - Ensaios de caracterização mecânica de espécies de madeiras	28
3.3 - Dimensões dos corpos-de-prova e velocidades de ensaios utilizados na caracterização de espécies de madeiras	29
3.4 - Condições de umidade dos corpos-de-prova de ensaios na caracterização de espécies de madeiras	30
3.5 - Espécies de madeira utilizadas na caracterização	30
3.6 - Amostragem nas pranchas das espécies de madeiras	31
3.7 - Tamanho da amostra	32
3.8 - Preparação e climatização dos corpos-de-prova de ensaios de caracterização mecânica	32
3.9 - Realização dos ensaios de caracterização mecânica	32
4 - RESULTADOS E DISCUSSÃO	33
4.1 - Correção dos resultados dos ensaios de caracterização mecânica	33
4.2 - Resultados dos ensaios de caracterização mecânica	33
4.2.1 - Valores médios dos ensaios da espécie cumaru – Dipterix odorata	33
4.2.2 - Valores médios dos ensaios da espécie jequitibá – Allantoma lineata	36
4.2.3 - Valores médios dos ensaios da espécie quaruba – <i>Vochyisia guianensis</i>	38
4.3 - Valores numéricos de diminuição da massa e do volume dos corpos-de- prova e do tempo de ensaios de caracterização com a redução das dimensões dos corpos-de-prova e diminuição da velocidade de ensaios -	40
4.3.1 - Flexão estática - Diminuição de massa, volume e tempo de ensaios com a redução das dimensões dos corpos-de-prova e diminuição da velocidade de ensaios	41

4.3.2 - Compressão paralela às fibras - Diminuição de massa, volume e	
tempo de ensaios com a redução das dimensões dos corpos-de-prova e	
diminuição da velocidade de ensaios	42
•	
4.3.3 - Cisalhamento paralelo às fibras - Diminuição de massa, volume e	
tempo de ensaios com a redução das dimensões dos corpos-de-prova e	
<u> </u>	44
diminuição da velocidade de ensaios	
4.4 - Análise estatística dos resultados de ensaios de caracterização	
mecânica	45
mccanca	73
4.4.1 - Resumo da análise estatística dos resultados de ensaios de	
caracterização mecânica	48
cui uctei izuçuo inccuincu	
4.4.2 - Visualização da tendência da resistência mecânica para as três	
espécies agrupadas	49
especies agrupadas	
4.4.3 - Visualização da tendência do coeficiente de variação da resistência	
mecânica para as três espécies agrupadas	52
5 - CONCLUSÕES E RECOMENDAÇÕES	55
REFERÊNCIAS BIBLIOGRÁFICAS	57
A PÂNDAGEG	~ 0
APÊNDICES	60
A - Tensão de ruptura na flexão estática - Resultados dos ensaios	61
•	
B - Módulo de elasticidade na flexão estática - Resultados dos ensaios	74
C - Tensão de ruptura na compressão paralela às fibras - Resultados dos	
ensaios	87
Citation	07
D - Tensão de ruptura no cisalhamento paralelo às fibras - Resultados dos	
ensaios	102
Clisatos	102
E - Resumo da análise de variância da flexão estática, compressão paralela	
às fibras, cisalhamento paralela às fibras a 12% de teor de umidade,	
•	
com três velocidades diferentes de ensaios e cinco dimensões diferentes -	11/

LISTA DE TABELAS

Tabela 2.1	- Valor estimado da probabilidade relativa (±P) para 175 espécies de
	madeiras da Amazônia
Tabela 3.2	- Velocidades de ensaios e dimensões dos corpos-de-prova utilizados
	na caracterização de resistência da muiratinga (Maquira
	sclerophylla)
Tabela 3.3	- Valor médio da tensão de ruptura na flexão estática e coeficiente de
	variação para a madeira da espécie muiratinga (Maquira
	sclerophylla)
Tabela 3.4	- Valor médio do módulo de elasticidade na flexão estática e
	coeficiente de variação para a madeira da espécie muiratinga
	(Maquira sclerophylla)
Tabela 3.5	- Valor médio da tensão de ruptura na compressão paralela às fibras
	e coeficiente de variação para a madeira da espécie muiratinga
	(Maquira sclerophylla)
Tabela 3.6 -	Valor médio da tensão de ruptura no cisalhamento paralelo às fibras e
	coeficiente de variação para a madeira da espécie muiratinga
	(Maquira sclerophylla)
Tabela 3.7	- Valor médio da tensão de ruptura na flexão estática e coeficiente de
	variação para a madeira da espécie breu sucuruba (Protium
	heptaphyllum)
Tabela 3.8	- Valor médio do módulo de elasticidade na flexão estática e
	coeficiente de variação para a madeira da espécie breu sucuruba
	(Protium heptaphyllum)
Tabela 3.9	- Valor médio da tensão de ruptura na compressão paralela às fibras
	e coeficiente de variação para a madeira da espécie breu sucuruba
	(Protium heptaphyllum)
Tabela 3.10) - Valor médio da tensão de ruptura no cisalhamento paralelo às
	fibras e coeficiente de variação para a madeira da espécie breu
	sucuruba (Protium heptaphyllum)
Tabela 3.1	1 - Velocidades de ensaios e dimensões dos corpos-de-prova
	utilizados na caracterização

Tabela	caracterizadas
Tabela 3	.13 - Propriedades físicas das espécies a serem caracterizadas
	4.14 - Flexão estática - Valor médio do módulo de elasticidade e da
	duração do ensaio para a madeira do cumaru
Tabela 4	1.15 - Flexão estática - Valor médio da tensão de ruptura e da duração
	do ensaio para a madeira do cumaru.
Tabela 4	2.16 - Compressão paralela às fibras - Valor médio da tensão de ruptura
	e da duração do ensaio para a madeira do cumaru.
Tabela -	4.17 - Cisalhamento paralelo às fibras - Valor médio da tensão de
	ruptura e da duração do ensaio para a madeira do cumaru
Tabela 4	4.18 - Flexão estática - Valor médio do módulo de elasticidade e da
	duração do ensaio para a madeira do jequitibá
Tabela 4	1.19 - Flexão estática - Valor médio da tensão de ruptura e da duração
	do ensaio para a madeira do jequitibá
Tabela 4	2.20 - Compressão paralela às fibras - Valor médio da tensão de ruptura
	e da duração do ensaio para a madeira do jequitibá
Tabela -	4.21 - Cisalhamento paralelo às fibras - Valor médio da tensão de
	ruptura e da duração do ensaio para a madeira do jequitibá
Tabela 4	1.22 – Flexão estática - Valor médio do módulo de elasticidade e da
	duração do ensaio para a madeira da quaruba
Tabela 4	1.23 - Flexão estática - Valor médio da tensão de ruptura e da duração
	do ensaio para a madeira da quaruba
Tabela 4	.24 - Compressão paralela às fibras - Valor médio da tensão de ruptura
	e da duração do ensaio para a madeira da quaruba
Tabela -	4.25 - Cisalhamento paralelo às fibras - Valor médio da tensão de
	ruptura e da duração do ensaio para a madeira da quaruba
Tabela 4	.26 - Flexão estática - Valor médio da duração do ensaio, da massa e do
	volume médio do corpo-de-prova para as diferentes dimensões e
	velocidades
Tabela -	4.27 - Compressão paralela às fibras - Valor médio da duração do
	ensaio, da massa e do volume médio do corpo-de-prova para as
	diferentes dimensões e velocidades

Tabela 4.28 - Cisalhamento paralelo às fibras - Valor médio da duração do	
ensaio, da massa e do volume médio do corpo-de-prova para as	
diferentes dimensões e velocidades	44
Tabela 4.29 - Análise de variância do módulo de elasticidade na flexão estática,	
com diferentes velocidades de ensaios e dimensões de corpos-de-	
prova	46
Tabela 4.30 - Análise de variância da tensão de ruptura na flexão estática, com	
diferentes velocidades de ensaios e dimensões de corpos-de-prova	46
Tabela 4.31 - Análise de variância da tensão de ruptura na compressão paralela	
às fibras com, diferentes velocidades de ensaios e dimensões de	
corpos-de-prova	47
Tabela 4.32 - Análise de variância da tensão de ruptura no cisalhamento	
paralelo às fibras, com diferentes velocidades de ensaios e	
dimensões de corpos-de-prova	47
Tabela 4.33 - Flexão estática - Resumo da análise estatística a 5% de exclusão	
para a resistência à flexão estática	48
Tabela 4.34 - Compressão paralela às fibras - Resumo da análise estatística a	
5% de exclusão da resistência com a dimensão do corpo-de-prova e	
velocidade de ensaio	48
Tabela 4.35 - Cisalhamento paralelo às fibras - Resumo da análise estatística a	
5% de exclusão da resistência com a dimensão do corpo-de-prova e	
velocidade de ensaio	49
Tabela 4.36 - Agrupamento de diferentes dimensões com resistências	マノ
equivalentes, a um nível de segurança de 95%	49
equivalences, a uni nivei de seguiança de 93%	47

LISTA DE FIGURAS

Figura 2.1 - Desenho esquemático do ensaio de tração paralela às fibras	6
Figura 2.2 - Desenho esquemático do ensaio de tração perpendicular às fibras	6
Figura 2.3 - Desenho esquemático do ensaio de compressão paralela às fibras.	7
Figura 2.4 - Desenho esquemático do ensaio de flexão estática	7
Figura 2.5 - Desenho esquemático do ensaio de compressão perpendicular às	
fibras	8
Figura 2.6 - Desenho esquemático do ensaio de cisalhamento paralelo às	
fibras	9
Figura 2.7 - Desenho esquemático do ensaio de dureza Janka	9
Figura 2.8 - Desenho esquemático do ensaio de fendilhamento	10
Figura 2.9 - Corpo-de-prova para ensaio de cisalhamento com redução nas	
dimensões do material a ser ensaiado	12
Figura 2.10 - Carregamento de longa duração em ensaios com pequenos	
corpos-de-prova sem defeitos. (Fonte: Madsen, 1992)	13
Figura 2.11 - Carregamento de curta duração em ensaios com pequenos	
corpos-de-prova sem defeito	14
Figura 2.12 - Influência da altura da viga na resistência à flexão	16
Figura 4.13 - Flexão estática - Valor médio da duração do ensaio, para as três	
espécies agrupadas	41
Figura 4.14 - Flexão estática - Variação do volume ou peso do corpo-de-	
prova	42
Figura 4.15 - Compressão paralela às fibras - valor médio da duração do	
ensaio, para as três espécies agrupadas	43
Figura 4.16 - Compressão paralela às fibras - Variação do volume ou peso do	
corpo-de- prova	43
Figura 4.17 - Cisalhamento paralelo às fibras - Valor médio do tempo da	
ensaio, para as três espécies agrupadas	44
Figura 4.18 - Cisalhamento paralelo às fibras - Variação do volume ou peso	
do corpo-de-prova	45
Figura 4.19 - Flexão estática - Variação do valor médio do módulo de	
elasticidade, resultante do agrupamento das três espécies e das três	
velocidades	50

Figura 4.20 - Flexão estática – variação do valor médio da tensão de ruptura,	
resultante do agrupamento das três espécies e das três	
velocidades	51
Figura 4.21 - Compressão paralela às fibras - Variação do valor médio da	
tensão de ruptura, resultante do agrupamento das três espécies,	51
Figura 4.22 - Cisalhamento paralelo às fibras - variação do valor médio da	
tensão de ruptura, resultante do agrupamento das três espécies e	
das três velocidades	52
Figura 4.23 - Flexão estática - Variação do valor médio do coeficiente de	
variação do módulo de elasticidade, resultante do agrupamento	
das três espécies e das três velocidades	53
Figura 4.24 - Flexão estática - Variação do valor médio do coeficiente de	
variação da tensão de ruptura, resultante do agrupamento das três	
espécies e das três velocidades	53
Figura 4.25 - Compressão paralela às fibras - Variação do valor médio do	
coeficiente de variação da tensão de ruptura, resultante do	
agrupamento das três espécies e das três velocidades	54
Figura 4.26 - Cisalhamento paralelo às fibras - Variação do valor médio do	
coeficiente de variação da tensão de ruptura, resultante do	
agrupamento das três espécies e das três velocidades	54

1 - INTRODUÇÃO

1.1 - Generalidades

Explorada pelo homem a milhares de anos, parece contraditório a necessidade de se criar programas específicos com o objetivo de tornar a madeira um material de construção competitivo. Não resta dúvida de que o clima e a disponibilidade de diferentes materiais tiveram influência decisiva no desenvolvimento da técnica de construir. Por apresentar menor durabilidade natural do que a rocha, a madeira foi perdendo espaço ao longo dos anos, resultando no desenvolvimento de tecnologias voltadas para o conhecimento e domínio dos materiais mais duráveis.

Numa época de crise energética e de preocupação com o meio ambiente é de se esperar um maior interesse por este material, cujo beneficiamento requer pouco consumo de energia, menor contaminação do ar e da água, se fazendo necessário um tratamento diferenciado a este material que vem, desde a antiguidade, servindo de matéria prima para a proteção e bem estar do ser humano.

Os ensaios de caracterização em pequenos corpos-de-prova sem defeitos, têm como objetivo determinar o potencial de usos das espécies de madeiras, seja por meio de análise destas propriedades ou pela comparação com espécies já tradicionalmente utilizadas no mercado. O alto custo de caracterização de peças em tamanho estrutural, fez com que a maioria das normas de dimensionamento de estruturas utilizasse os valores de resistência obtidos em ensaios de caracterização em pequenos corpos-de-prova sem defeitos para determinar as tensões de cálculo de estruturas. As peças estruturais passam por um processo de classificação visual e/ou mecânico de resistência e a partir dos ensaios em pequenos corpos-de-prova sem defeitos, são determinadas as tensões de cálculo. A utilização de pequenos corpos-de-prova permite eliminar a influência de defeitos tais como nós, rachaduras, inclinação das fibras e teor de umidade na caracterização de madeiras.

Assim, as espécies de madeiras podem ser comparadas, sem a influência destas variáveis, que alteram significativamente as propriedades de resistência de forma aleatória, dificultando a analise das reais características físicas e mecânicas de uma determinada espécie de madeira.

O presente trabalho tem como objetivo verificar a influência de velocidades de ensaios e de dimensões de corpos-de-prova na caracterização mecânica de três espécies de madeiras de florestas naturais tropicais. Considerando a inexistência de norma brasileira específica para caracterização de espécies de madeira, pretende-se fornecer subsídios para implementação

de uma metodologia de ensaios que possibilite otimizar seus custos sem perda de precisão, qualidade e variabilidade nos resultados. A metodologia de ensaios proposta terá como referência as normas COPANT 555/73, 463/73 e 464/72 (Comisión Panamericana de Normas Técnicas), que é semelhante a norma ASTM D143/72 (American Standard of Testing Materials) que são utilizadas pelo Laboratório de Produtos Florestais (LPF) do Serviço Florestal Brasileiro (SFB), desde sua fundação em 1973.

1.2 - Justificativa

A utilização de forma sustentável de um material está condicionada à sua caracterização. Para permitir quantificar numericamente e comparar resultados de ensaios, a caracterização é normalizada, existindo uma grande variabilidade de procedimentos em todo o mundo. Isto porque os procedimentos foram surgindo naturalmente em função de necessidades demandadas pelos mercados regionais. Dificilmente as metodologias sofrem alterações significativas ao longo do tempo, devido à necessidade de manter a base de dados como referência para caracterizações posteriores. No processo de caracterização, comumente são consideradas as propriedades físicas (massa específica verde, seca, aparente e básica e contração tangencial, radial e volumétrica) e propriedades mecânicas (flexão estática, compressão paralela às fibras, compressão perpendicular às fibras, cisalhamento paralelo às fibras, fendilhamento, dureza janka, tração paralela e perpendicular às fibras e arrancamento de prego), em condição verde e 12% a 15% de teor de umidade.

O desenvolvimento de novas tecnologias, como os compostos de madeira e a modificação genética na produção de clones, mostram que as normas de ensaios são ferramentas que deverão estar sempre disponíveis na caracterização e avaliação da qualidade destes produtos. Daí a necessidade de se inovar, em termos de eficiência, precisão e qualidade de ensaios. Isto pode ser obtido por meio de ações tais como:

- A redução das dimensões dos corpos-de-prova pode aumentar a precisão e diminuir a variabilidade dos dados de caracterização, pela possibilidade de se confeccionar corpos-de-prova praticamente isento de defeitos. Menores dimensões significam menores capacidades de cargas e, consequentemente, máquinas de ensaios menores e mais precisas. O custo de transporte também será reduzido pela diminuição do volume de madeira a ser ensaiada;
- Com maiores velocidades os ensaios são realizados em tempo reduzido;
- O tempo de condicionamento é bastante reduzido com a diminuição das dimensões dos corpos-de-prova.

A combinação de dimensões de corpos-de-prova, velocidades de ensaios e propriedades de caracterização resultam num volume extremamente grande de corpos-de-prova e consequentemente de ensaios de laboratório. Daí a necessidade de se estabelecer um número mínimo de dimensões de corpos-de-prova e velocidades de ensaios que possam fornecer dados representativos. As dimensões propostas foram a redução em número inteiro da dimensão normalizada até o mínimo de 10 mm. Corpos-de-prova com dimensões menores que um centímetro trazem dificuldades de confecção e esquadro em máquinas convencionais de carpintaria. As velocidades de ensaios propostas são duas e três vezes maiores do que as velocidades especificadas na norma COPANT/72. Velocidades muito altas dificultam o controle do operador, devido a rapidez com que o corpo-de-prova é rompido.

Em relação às propriedades mecânicas, foram selecionadas aquelas que têm alem das funções de estabelecer usos apropriados e comparar espécies, também tem a função de fornecer dados numéricos para dimensionamento de estruturas.

1.3 - Hipótese de trabalho

A hipótese de trabalho que norteia a presente proposta, objetiva primeiramente detalhar e explicitar a metodologia que orienta as atividades a serem desenvolvidas de forma a mostrar o comportamento da madeira em relação às dimensões dos corpos-de-prova e velocidades de ensaios e posteriormente quantificar suas influências nas propriedades mecânicas. Pretende-se assim responder ao seguinte questionamento básico: "Redução das dimensões dos corpos-de-prova e aumento das velocidades de ensaio tendem a apresentar os mesmos valores das propriedades de resistência, quando comparados com as metodologias atualmente utilizadas".

1.4 - Objetivo

1.4.1 - Objetivo geral

Fornecer dados que possibilitem a elaboração de metodologia de ensaios em laboratório visando a determinação de propriedades mecânicas da madeira.

1.4.2 - Objetivos específicos

Verificar a influência:

- Da diminuição das dimensões dos corpos-de-prova, em cinco seções transversais variando de 50x50 mm a 10x10 mm, na determinação da resistência à flexão estática,

- compressão paralela às fibras e cisalhamento paralelo às fibras, para três espécies de madeira com 12% de teor de umidade;
- Do aumento das velocidades dos ensaios, variando de uma a três vezes maiores do que as velocidades especificadas pela norma COPANT 555/73, 463/73 e 464/72, na determinação da resistência na flexão estática, compressão paralela às fibras e cisalhamento paralelo às fibras, para três espécies de madeira com 12% de teor de umidade;

2 - REVISÃO DE LITERATURA

Segundo a Associação Brasileira de Normas Técnicas, uma norma técnica é um documento estabelecido por consenso e aprovado por um organismo reconhecido que fornece, para uso comum e repetitivo, regras, diretrizes ou características para atividades ou para seus resultados, visando à obtenção de um grau ótimo de ordenação em um dado contexto. Seu objetivo é simplificar e reduzir procedimentos na elaboração de produtos e serviços, para facilitar o intercâmbio comercial e tecnológico, com base em referências padronizadas para evitar regulamentos conflitantes sobre produtos e serviços em diferentes países.

Com a globalização as normas tendem a se unificar por regiões, grupos de países ou continentes. Em 1991 foi criado o Comitê Mercosul de Normalização (CMN) como associação civil sem fins lucrativos e não governamental. A partir de 2000 por meio de um convênio firmado com o Grupo Mercado Comum, o Comitê passou a se chamar Asociación Mercosur de Normalización (AMN) e se transformou no único organismo responsável pela gestão da normalização voluntária no âmbito do MERCOSUL. A Asociación é formada pelos Organismos Nacionais de Normalização (ONN) dos países membros, que são o Instituto Argentino de Normalizatión e Certificatición - IRAM, o Instituto Nacional de Tecnologia e Normalizatión do Paraguai - INTN, o Instituto Uruguayo de Normas Técnicas - IUNT e a Associação Brasileira de Normas Técnicas - ABNT.

A AMN desenvolve suas atividades de normalização por intermédio de Comitês Setoriais Mercosul (CSM), os quais representam os segmentos industriais da sociedade e tem por finalidade o estabelecimento dos programas setoriais de normalização e a condução do processo de elaboração e harmonização de normas para posterior aprovação da AMN.

Até o momento foram unificadas 493 Normas MERCOSUL, e estão previstas as uniformizações de mais 600 documentos pelos diversos Comitês Setoriais do

MERCOSUL. A criação relativamente recente do CMN justifica a inexistência até o momento, do comitê setorial da madeira.

A normalização dos materiais de construção é de importância fundamental para seu uso de forma racional, econômica e segura. Materiais mais homogêneos exigem procedimentos de caracterização mais simplificados.

O ensaio de tração no aço é comumente utilizado para determinar os parâmetros fundamentais que caracterizam o seu comportamento mecânico. No concreto, o parâmetro de caracterização é o ensaio de compressão. A variabilidade de comportamento mecânico em qualquer direção da peça de madeira torna o processo de caracterização mais complexo. Desta forma, o ensaio de resistência deve ser especificado em relação à direção das fibras, ou seja, tração ou compressão paralela, perpendicular ou oblíqua. A condição de origem biológica faz com que a metodologia de caracterização leve em consideração uma gama muito extensa de variáveis, para viabilizar a comparação segura dos valores quantitativos resultantes da caracterização. Em relação às dimensões dos corpos-de-prova, a ASTM D143/72 permite reduzir a seção transversal dos corpos-de-prova de 50x50 mm para 25x25 mm para algumas propriedades, quando as toras a serem caracterizadas possuem pequenos diâmetros. Na seção introdutória, ela afirma que seções 50x50mm têm a vantagem de possuir maior quantidade de anéis de crescimento, é menos influenciado pela diferença da madeira de primavera ou inverno sendo grande o bastante para representar uma proporção considerável do material madeira.

2.1 - Ensaios de caracterização

Os ensaios de caracterização normalmente são realizados com amostras a 12% de teor de umidade e saturados em água, conforme metodologia de normas específicas, onde é definido o sistema de amostragem, a velocidade de carregamento, dimensão do corpo-de-prova, esquema estático e direção do carregamento e número de corpos-de-prova em função da precisão desejada. Os principais tipos de ensaios para a caracterização de espécies de madeiras são descritos a seguir. A necessidade de se determinar a resistência em várias direções em relação à direção das fibras e dos anéis de crescimento é imposta pela condição de material anisotrópico e heterogêneo.

2.1.1 - Tração paralela às fibras

Existem poucas informações disponíveis sobre a resistência a tração paralela às fibras (Figura 2.1). Sendo um corpo-de-prova de difícil execução e a possibilidade das garras da

máquina de ensaios esmagarem as fibras na compressão perpendicular, os resultados de ensaios tornam-se pouco confiáveis. Outro fator relevante é que nas estruturas correntes, normalmente são as ligações de extremidade da peça que definem a área da seção transversal, necessária para resistir aos esforços. Esta propriedade é mais utilizada no dimensionamento de elementos tracionados de treliças, nos esforços à flexão e comparação entre espécies.

Direção das fibras ★

Figura 2.1 - Desenho esquemático do ensaio de tração paralela às fibras.

2.1.2 - Tração perpendicular às fibras

Na tração perpendicular às fibras (Figura 2.2) a madeira possui baixa resistência, apresentando um alto coeficiente de variação nos resultados de ensaios. A resistência na direção radial é um pouco superior à resistência na direção tangencial, porém pode chegar a quase 40 vezes maior na direção paralela às fibras. Esta propriedade é mais utilizada na comparação entre espécies, ligações, nas estruturas em arco e peças sujeitas a esforços de torção.

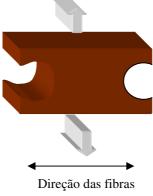


Figura 2. 2 - Desenho esquemático do ensaio de tração perpendicular às fibras.

2.1.3 - Compressão paralela às fibras

O ensaio é realizado em corpos-de-prova de seção quadrada, cuja altura é de quatro vezes a largura da seção, para que não ocorra a flambagem, determinando a tensão de ruptura e o módulo de elasticidade (Figura 2.3). O módulo de elasticidade na compressão paralela às fibras é igual a aproximadamente 90% do módulo de elasticidade na flexão. Esta propriedade é usada para dimensionamento de pilares ou colunas, vigas, comparação entre espécies e ligações.

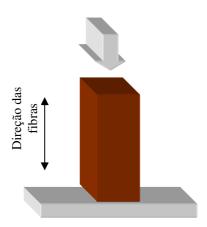


Figura 2.3 - Desenho esquemático do ensaio de compressão paralela às fibras.

2.1.4 - Flexão estática

O ensaio é realizado em corpos-de-prova de seção quadrada, com esquema estático de viga isostática bi apoiada com carga concentrada central ou dois pontos de carga eqüidistantes dos apoios, determinando a tensão de ruptura e o módulo de elasticidade (Figura 2.4). A relação entre vão livre e altura da peça fica em torno de 18 a 20. Estas duas propriedades são usadas para dimensionamento de peças fletidas, tais como vigas, comparação entre espécies e arqueamento.

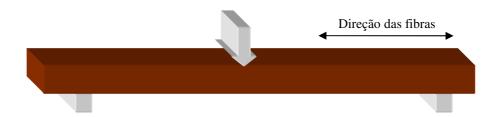


Figura 2.4 - Desenho esquemático do ensaio de flexão estática.

2.1.5 - Compressão perpendicular às fibras

Como o esforço é perpendicular ao eixo das fibras (Figura 2.5), o que ocorre é a compactação das fibras (eliminação dos vazios) e conseqüentemente o aumento da capacidade de carga da peça de madeira. Sob a ação de cargas pontuais (parafusos, por exemplo) a resistência da madeira aumenta devido à contribuição das fibras adjacentes, livres de esforços. Devido às deformações, a resistência máxima é caracterizada pela capacidade de carga no limite proporcional. A tensão no limite proporcional na compressão perpendicular às fibras é de aproximadamente cinco vezes menor que a tensão de ruptura na compressão paralela às fibras. Esta propriedade é usada no dimensionamento do apoio de vigas, treliças, dormentes e comparação entre espécies.



Figura 2.5 - Desenho esquemático do ensaio de compressão perpendicular às fibras.

2.1.6 - Cisalhamento paralelo às fibras

Considerando as três direções principais na madeira, o cisalhamento (Figura 2.6), ocorre com o deslizamento paralelo das fibras e o cisalhamento perpendicular às fibras ocorre na direção de corte das fibras ou na direção de rolamento das fibras.

Normalmente não se considera o cisalhamento perpendicular às fibras no plano de corte, devido à alta resistência de corte das fibras, cujo esforço necessário, com certeza já terá causado a ruptura por outro tipo de solicitação, como por exemplo, na compressão perpendicular às fibras ou flexão. Apesar de algumas normas recomendarem que o ensaio de cisalhamento paralelo às fibras seja feito com 50% dos corpos-de-prova no plano tangencial e 50% no plano radial, a variação da resistência não é significativa em termos de

utilização estrutural. Esta propriedade é importante no dimensionamento de vigas, ligações e comparação entre espécies.

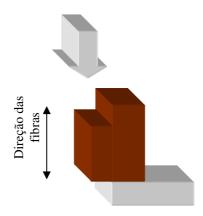


Figura 2.6 - Desenho esquemático do ensaio de cisalhamento paralelo às fibras.

2.1.7 – Dureza Janka

Consiste na penetração de uma semi-esfera, na direção paralela e perpendicular às fibras (Figura 2.7). Esta propriedade possui uma boa correlação com as propriedades de resistência da madeira sendo utilizada na comparação de propriedades entre espécies.

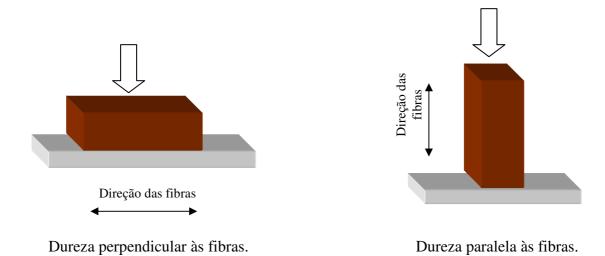


Figura 2.7 - Desenho esquemático do ensaio de dureza janka.

2.1.8 - Fendilhamento

Este ensaio mede a resistência da madeira rachar no sentido longitudinal (Figura 2.8). Tem importância nos entalhes de apoio de vigas e rachaduras com a penetração de pregos.

Figura 2.8 - Desenho esquemático do ensaio de fendilhamento.

2.1.9 - Resistência ao impacto

Existem dois tipos de ensaios de determinação da resistência ao impacto na madeira. A flexão dinâmica que se caracteriza pela aplicação de cargas rápidas e sucessivas e a tenacidade, que utiliza o princípio básico do pêndulo. O comportamento da madeira sob impacto é diferente quando comparado com o carregamento estático. O estudo do comportamento dinâmico da madeira tem aplicação em aeronaves, máquinas, equipamentos esportivo, dormentes, embalagens, escadas, carrocerias em geral e cabos de ferramentas.

2.2 - Influência da dimensão do corpo-de-prova e da velocidade de ensaio na caracterização física e mecânica de espécies de madeira

A duração da carga ou o tempo em que a carga atua numa estrutura, seja de forma contínua ou intermitente, é um fator muito importante na determinação da capacidade de carga na madeira ao longo do tempo. Os ensaios de caracterização são realizados com velocidade de carga ou velocidade de deformação constante até atingir a carga de ruptura, que ocorre em aproximadamente 5 minutos. Em condições reais as cargas podem atuar por poucos segundos, como é o caso da ação do vento ou por vários anos, como no caso de sobrecargas ou peso próprio da estrutura. Para 10 anos de carregamento, a perda de resistência da madeira pode variar de 40% (Wood Handbook, 2002) a 60% (Larsen, 2001). A ASTM D 143/72 fornece a opção de ensaios na flexão e compressão paralela às fibras com duas dimensões de seção transversal: 50x50 mm e 25x25 mm. Recomenda que a

dimensão reduzida seja utilizada somente para árvores com diâmetros reduzidos. Sua justificativa é que "o corpo-de-prova de 50x50 mm, de seção transversal, tem a vantagem de possuir um maior número de anéis de crescimento, sendo menos influenciado pelo lenho primaveril (earlywood) e tardio (latewood) e finalmente que suas dimensões são grandes o bastante para representar uma considerável porção do material amostrado".

Normalmente estas variáveis são tratadas de forma distinta e para situações específicas na análise da sua influência na resistência da madeira.

Wood (1951) realizou ensaios com cento e vinte e seis amostras de Douglas-Fir de 1 polegada (2,54 cm)x1 polegada (2,54 cm), com 6% e 12% de teor de umidade na flexão, com cargas de longa duração e com velocidade de carga constante. O trabalho teve início em 1943 e não foi totalmente concluído. Os ensaios foram realizados com a ruptura variando de poucos minutos até 5 anos. A curva resultante tem a forma da Equação (2.1).

$$y = \frac{108,4}{x^{0.04635}} + 18,3$$
 Equação (2.1)

onde,

y = razão entre carga de curta e longa duração, em percentagem

x = duração do carregamento, em segundos

Segundo Gerhards (1977) as primeiras investigações sobre o efeito do tempo de duração de carga na resistência da madeira tiveram início em 1840. Em 1881, Thurston (apud Gerhards, 1977), descobriu que peças fletidas de pequenas dimensões quebravam entre 8 e 15 meses com uma carga no valor de 60% da resistência da madeira obtida com cargas de curta duração. No mesmo período, Lanza (apud Gerhards, 1977) ensaiou vigas com 6,30 m de vão livre, as quais quebravam após 6 meses, com tensões de 6,89 MPa (68,9 kgf/cm²) a 11,71 MPa (117,1 kgf/cm²). Também neste período, Johnson (apud Gerhards, 1977) concluiu que colunas com carregamento de longa duração suportavam aproximadamente 50% dos valores de resistência em ensaios convencionais. O autor analisou vários trabalhos sobre a influência da velocidade de carga, datados de 1908 a 1972. Apesar das metodologias de ensaios serem diferentes, ele propôs uma equação para correção de dados de ensaios na flexão estática, tomando como referência o tempo de ensaio, até a ruptura, de 5 minutos. O autor sugere que o efeito de velocidade de carga é exponencialmente relacionado com a tensão de ruptura na flexão e que o efeito de duração de carga é exponencialmente relacionado com a tensão de flexão. A velocidade de carga tem maior efeito na resistência da madeira verde do que na madeira a 12% de teor de umidade.

Gehards et. al. (1984) realizaram uma série de ensaios em peças comerciais de alta qualidade visuais solicitadas a tração paralela às fibras para uma mesma espécie, nas velocidades de 12,9 psi/s (5,9 kgf/s), 129 psi/s (58,6 kgf/s) e 1322 psi/s (600,9 kgf/s). O teor de umidade ficou em torno de 10%. Para as peças de classe superior a resistência aumentou de forma significativa. A resistência diminui à medida que a qualidade da peça diminui.

Gehards (1986) realizou uma série de ensaios na flexão em peças comerciais com quatro classes de resistência para uma mesma espécie, nas velocidades de 300 pounds/min (136,4 kgf/min), 3 pounds/min (1,4 kgf/min) e 0,03 pounds/min (0,014kgf/min) o teor de umidade ficou em torno de 10%. Para as peças de classe superior a resistência aumentou de forma linear com o logarítimo da velocidade de carregamento. Para as peças de baixa resistência a variação foi praticamente desprezível.

Gehards & Link (1998) fizeram ensaios de flexão com peças estruturais 2 polegadasx4 polegadas em Douglas-Fir com várias velocidades de carregamento para verificar a influência da classe de resistência na duração de carga. Para carga constante, o tempo de ruptura é menor. Porém, entre classes de resistência a diferença pode não ser significativa. Os resultados sugerem que as tensões admissíveis na flexão podem não ser conservativas para o dimensionamento onde a duração de carga é importante.

Kretschmann (1991) realizou uma série de ensaios de cisalhamento paralelo às fibras, usando o corpo-de-prova especificado pela ASTM D 143/72 e comparou com corpo-de-prova, nas mesmas dimensões, porém com o esforço aplicado numa camada com espessura reduzida de madeira sem defeitos, conforme mostra a Figura 2.9. Os resultados mostraram não haver diferença significativa na comparação dos resultados de ensaios a um nível de 1% de exclusão.

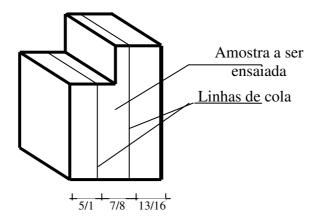


Figura 2.9 - Corpo-de-prova para ensaio de cisalhamento paralelo às fibras com redução nas dimensões do material a ser ensaiado.

Para Madsen (1992), existe uma alta correlação entre a velocidade de carregamento e a duração do carregamento. Ambos são tratados de forma independentes, porque a velocidade de carregamento é de curta duração, enquanto a duração do carregamento causa efeitos significativos ao longo do tempo. O mesmo autor apresentou dados, cujo efeito foi evidenciado em 1741, por Le Clerc, que ensaiou quatro vigas de 18x18x550 cm, com cargas constantes. Duas vigas foram carregadas com 4100 kgf, ocorrendo a ruptura após uma hora. As outras duas foram carregadas com 2710 kgf, ocorrendo a ruptura após 176 dias e 197 dias. Ele conclui que peças com dimensões estruturais suportam, durante a vida útil, a metade da carga determinada em ensaios com pequenas amostras sem defeitos. Madsen (1992) apresenta também um trabalho feito por Lyman Wood, em 1943, que resultou no gráfico conhecido como "Madison Curve". Foram ensaiados 128 corpos-deprova de 2,5x2,5x41,0 cm, com 6% e 12% de teor de umidade, na flexão. A carga foi mantida constante para cada série de 16 ensaios. O valor da carga foi diferente para cada série e definido como uma percentagem da resistência obtida em ensaios de curta duração. A Figura 2.10 mostra o diagrama para carregamento de longa duração, da tensão (SR) resultante da carga aplicada, que é uma percentagem da resistência a ruptura obtida em ensaios de curta duração, em função do logaritmo do tempo (D) de ruptura. O gráfico da figura mostra a preocupação em avaliar a perda de resistência da madeira ao longo do tempo e não a sua influência na resistência para pequenas variações de tempo de carregamento. O ajuste de curva escolhido foi a hiperbólica, resultando na Equação (2.2),

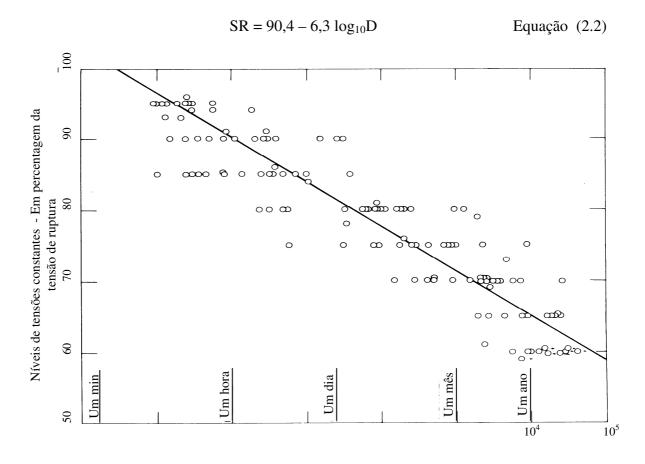


Figura 2.10 - Carregamento de longa duração em ensaios com pequenos corpos-deprova sem defeitos. (Fonte: Madsen, 1992)

O diagrama de carregamento para carga de curta duração, em pequenos corpos-de-prova sem defeito, conduzido por Wood (1951) é mostrado na Figura 2.11. O gráfico mostra o aumento de resistência para grandes intervalos de tempo para cargas de curta duração, ou seja, foi fixado um valor de carga com atuação de 1 segundo, 10 segundos e 100 segundos.

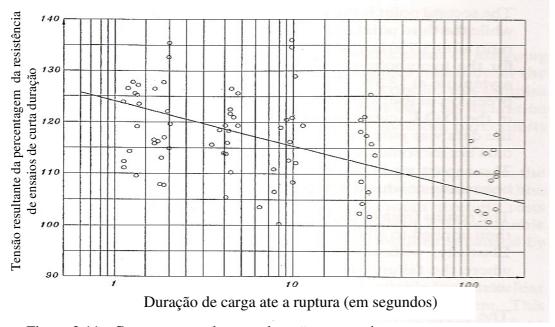


Figura 2.11 - Carregamento de curta duração em ensaios com pequenos corpos-de-prova sem defeito. (Fonte: Wood, 1992)

Dias, et al. (1995) apresentaram proposta de método para ensaio com o objetivo de determinar a resistência e o módulo de elasticidade da madeira quando solicitada por compressão normal às fibras. Com o objetivo de definir a variação do comportamento da relação tensão e deformação foram efetuados vários ensaios para diversas espécies de madeira de diferentes massas específicas e com teor de umidade a 12% e em condição saturada. A relação entre tensão e deformação mostrou ser independente da espécie e do teor de umidade. Foram realizados ensaios com corpos-de-prova de seção quadrada 40x40 mm e 50x50 mm e relação altura/largura de 2 e 3. Para o autor o corpo-de-prova que se mostrou mais adequado foi o de 50x50x100 mm, por não apresentar problemas de instabilidade durante o ensaio e possibilitar maior precisão de esquadro na preparação dos corpos-de-prova. Os ensaios com velocidade de carga constante foram realizados de forma a atingir a resistência convencional (tensão que provoca deformação específica residual igual 0,2%) em 1,5, 2,0, e 2,5 minutos. Os ensaios com velocidade de deformação constante foram realizados de forma a atingir a resistência convencional em 2 minutos. Os resultados obtidos permitiram concluir que o fator velocidade de aplicação de carga, com

tolerância de meio minuto no tempo de duração do ensaio, não tiveram influência significativa nos valores obtidos para a resistência convencional e para o módulo de elasticidade.

Silveira, et al. (1998) verificaram a influência do tamanho do corpo-de-prova na variação dimensional da madeira de *Eucalyptus* sp. com aproximadamente 30 anos de idade. Foram determinadas as contrações tangenciais, radiais, longitudinais e volumétricas em corpos-de-prova de diferentes dimensões e formas. As contrações foram medidas na condição saturada em água, a 8,6% e seco a 0% de teor de umidade. Os corpos-de-prova foram retirados de discos cortados de 50 cm em 50 cm ao longo do comprimento comercial de uma árvore com DAP de 45 cm. As dimensões dos corpos-de-prova foram de 2,5 cm, 3,0 cm, 5,0 cm e 10,0 cm. A metodologia não faz referência à posição de retirada de cada corpo-de-prova. Foi determinada a média das massas específicas básicas, aparente e seca em estufa, mas não forneceu a variabilidade dos dados. Houve diferença significativa a um nível de 5% somente para a contração radial e tangencial. Para a contração radial não houve tendência crescente ou decrescente dos resultados com as dimensões. Para a contração tangencial houve tendência decrescente dos resultados com o aumento das dimensões dos corpos-de-prova. A relação contração tangencial/contração radial diminuiu com o aumento das dimensões dos corpos-de-prova

Segundo o American Institute of Timber Construction (2005), data de 1920, o primeiro trabalho mostrando o efeito das dimensões da peça de madeira na sua resistência, quando solicitada à flexão. Com o advento da viga laminada colada, Freas and Selbo, apud American Institute of Timber Construction (2005), estabeleceram a Equação (2.3) que considera a influência da altura da viga na resistência a flexão. A equação é baseada na altura padrão de 12 polegadas (30,48 cm) e na resistência a ruptura no lado de compressão da viga.

$$F = 0.81 \left(\frac{d^2 + 143in^2}{d^2 + 88in^2} \right)$$
 Equação (2.3)

onde, d é a altura da viga em polegadas e F, o coeficiente de redução da resistência. Ainda segundo o American Institute of Timber Construction (2005), Bohannan em 1966, apresentou um fator que mede a influência das dimensões da viga, baseado na teoria estatística de Weibull, que relaciona a resistência com o volume da peça de madeira, assumindo a ruptura por tração. Os ensaios com viga laminada colada resultaram na Equação (2.4),

$$C_{f} = \left(\frac{12 \text{ in.}}{d}\right)^{1/9}$$
 Equação (2.4)

onde, d é a altura da viga em polegadas e C, o coeficiente de redução da resistência. Esta equação foi desenvolvida para viga isostática com carga uniformemente distribuída e a relação L(vão livre)/d(altura da viga) = 21. Este coeficiente foi recomendado para utilização em viga laminada colada até 1991. Madsen (1992) comparou as duas equações, traçando as duas curvas, considerando a altura da viga de 286 mm (12 in) como referência, conforme mostra a Figura 2.12.

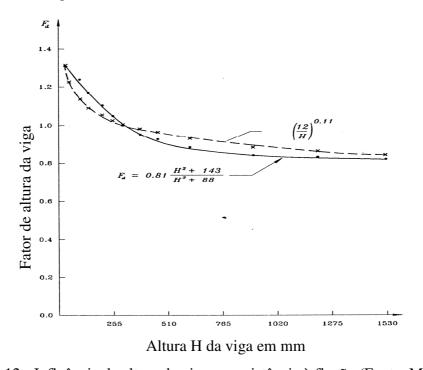


Figura 2.12 - Influência da altura da viga na resistência à flexão.(Fonte: Madsen,1992)

Em 1989, o American Institute of Timber Construction (2005), fez uma série de ensaios utilizando a equação obtida por Moody et al. (1987), que considera o volume da viga de madeira, resultando na Equação (2.5), que foi adotada pela National Design Specification (NDS) a partir de 1991.

$$C_v = K \left(\frac{5,125 \text{in.}}{b}\right)^{1/x} \left(\frac{12 \text{in.}}{d}\right)^{1/x} \left(\frac{21 \text{ft}}{L}\right)^{1/x} \le 1,0$$
 Equação (2.5)

onde C_v = o coeficiente de redução da resistência.

K = 1.0 para carga uniformemente distribuída;

K = 0.96 para duas cargas concentradas aplicadas em pontos equidistantes do vão livre;

K = 1,09 para carga concentrada no meio do vão;

d = altura da viga em polegada (in);

b = largura da viga em polegada (in);

 $L = v\tilde{a}o$ livre da viga em pe (ft);

x = 20 para Southern Pine;

x = 10 para outras espécies.

Thelandersson & Larsen (2003) comentam ser necessário o estabelecimento de grupos de controle para tempo de duração de carga, carregamentos com deformação ou carga constante, velocidade de ensaios e dimensões de corpos-de-prova, devido a miscelânea de procedimentos metodológicos existentes sobre o tema.

A controvérsia existente sobre a confiabilidade nos resultados de ensaios de cisalhamento paralelo às fibras levou Okkonen (1988) a modificar o tamanho e forma do corpo-de-prova normalizado pela ASTM, com o objetivo de identificar as fontes de variabilidade dos resultados de ensaios. O autor conclui que a variabilidade é conseqüência da interação entre espécies, tamanho e forma do corpo-de-prova, orientação das fibras e acessórios utilizados na realização dos ensaios.

2.3 - Tamanho da amostra

O número de corpos-de-prova necessários para caracterização numa amostragem aleatória depende da precisão desejada e da variabilidade da população amostrada. Sua estimativa é feita com base no valor médio e no erro padrão obtido em ensaios preliminares, a partir de uma probabilidade específica. Segundo Hoheisel (1968), a precisão da amostragem é frequentemente expressada em termos de intervalo de confiança da média, dada por

(estimativa da média) ± (t).(erro padrão da média)

$$\bar{X} \pm (t)(s_{\bar{x}})$$
 Equação (2.6)

A variação do intervalo de confiança da média (t. $s_{\bar{x}}$) é especificado dentro de uma probabilidade de confiança desejada (normalmente 1% ou 5%). O erro padrão da média é dado por

$$s_{\bar{x}} = \sqrt{\frac{s^2}{n} \left(1 - \frac{n}{N} \right)}$$
 Equação(2. 7)

Onde,

s = desvio padrão da estimativa;

n = número de amostras da estimativa;

N = número de amostra da população.

Como n/N é muito pequeno, a Equação 7 se torna,

$$s_{\bar{x}} = \sqrt{\frac{s^2}{n}}$$
 Equação (2.8)

Logo, a Equação 6 se torna,

$$\bar{X} \pm (t) \left(\sqrt{\frac{s^2}{n}} \right)$$
 Equação(2.9)

A Equação (2.9) relaciona a amplitude do intervalo de confiança, para uma determinada probabilidade, em relação ao valor médio de ensaio. Dividindo a segunda parcela da equação pela média estimada teremos em percentagem, a probabilidade relativa com a segurança estatística desejada. A vantagem de se analisar os dados, em termos de percentagem é a possibilidade de se determinar o intervalo de confiança para grupos de espécies, independente do valor dimensional da massa específica. A Equação (2.10) fornece a probabilidade relativa à média estimada, doravante denominada de ±P.

$$\pm (t) \left(\sqrt{\frac{s^2}{n}} \right) = \pm \left(\frac{t}{\bar{X}} \right) \left(\frac{s}{\sqrt{n}} \right) = \pm P$$
 Equação (2.10)

O valor da probabilidade relativa (±P) foi estimado utilizando-se o valor médio e desvio padrão de quatro projetos de caracterização de espécies de madeiras em diferentes regiões da Amazônia, realizados pelo Laboratório de Produtos Florestais. Foram consideradas 175 espécies com um mínimo de cinco ensaios por propriedade, em condição verde (saturada) e seca a 12% de teor de umidade. A Tabela 1 mostra o valor da probabilidade relativa (±P), para as três propriedades em estudo. Os valores referentes à madeira seca a 12% de teor de umidade foram utilizados no cálculo do número mínimo de corpos-de-prova necessários, ou seja,

Flexão estática: $\pm P = 0.09$ para o módulo de elasticidade;

 $\pm P = 0.12$ para a tensão de ruptura;

Compressão paralela às fibras: $\pm P = 0.10$ para a tensão de ruptura;

Cisalhamento paralelo às fibras: $\pm P = 0.13$ para a tensão de ruptura.

O numero mínimo de corpos-de-prova, com probabilidade de confiança de 95% é determinado explicitando o número de amostra (n), da Equação (2.11),

$$n = \left(\frac{t \cdot s}{\bar{x} \cdot \pm P}\right)^2$$
 Equação (2.11)

Onde,

t – valor numérico da distribuição de Student, para (n-1) corpos-de-prova;

s – desvio padrão do valor da resistência mecânica, dos ensaios realizados;

X – valor médio da resistência mecânica, dos ensaios realizados;

±P – Probabilidade relativa à media, de acordo com a Tabela 2.1.

Tabela 2.1 - Valor estimado da probabilidade relativa (±P) para 175 espécies de madeiras da Amazônia.

Parâmetros	Teor de	Flexão estática (%)		Compressão paralela às fibras (%)	Cisalhamento paralelo às fibras (%)
Estatísticos	umidade	Módulo de elasticidade	Tensão de ruptura	Tensão de ruptura	Tensão de ruptura
Valor médio	Verde	0,10	0,11	0,11	0,12
	Seco	0,09	0,12	0,10	0,13
Desvio padrão	Verde	0,04	0,04	0,05	0,05
	Seco	0,04	0,05	0,04	0,05
Coef. de	Verde	43,7	42,2	47,5	43,3
variação (%)	Seco	44,7	43,4	46,8	40,2
Valor médio	Verde e seco	0,09	0,11	0,10	0,13
Desvio padrão		0,04	0,05	0,05	0,05
Coef. de variação (%)		46,2	44,7	46,8	41,7

2.4 - Correção dos resultados de ensaios de caracterização mecânica

Existe a necessidade de se ajustar as propriedades mecânicas para um determinado teor de umidade porque a resistência da madeira varia com teor de umidade de ensaio.

Bodig (1982), Wood Handbook (2002), PADT-REFORT (1982) e Wangaard (1981) tornaram uma prática comum considerar que a resistência da madeira abaixo do ponto de saturação das fibras pode ser descrita por uma função exponencial negativa. Para Bodig (1982), a curva desta função se ajusta razoavelmente bem na Equação,

$$F_w = Ae^{-BU}$$
 Equação (2.12)

Onde,

F_w – Valor da propriedade mecânica;

U – teor de umidade, em porcentagem;

A e B – constantes.

A transformação logarítmica da Equação (2.12) resulta em

$$LnF_w = LnA - (B)(U)$$
 Equação (2.13)

A equação para ajustamento de resistência é obtida por meio de quatro pontos da curva, representados pelas condições de umidade usuais da madeira, que são: seca a 12% de teor de umidade, verde, umidade de ensaio e com uma umidade desconhecida,

$$\begin{split} LnF_{12\%} &= LnA - (B)(U_{12\%}) - \text{madeira seca a } 12\% \text{ de teor de umidade;} \\ LnF_{PSF} &= LnA - (B)(U_{PSF}) - \text{madeira verde (ponto de saturação das fibras);} \\ LnF_{apar..} &= LnA - (B)(U_{apar..}) - \text{madeira com teor de umidade de ensaio;} \\ LnF_{corr.} &= LnA - (B)(U_{corr.}) - \text{madeira com teor de umidade desconhecido.} \end{split}$$

Subtraindo a primeira equação da segunda acima, teremos,

$$Ln(F_{12\%}/F_{PSF}) = B(U_{PSF} - U_{12\%})$$
 Equação (2.14)

e subtraindo a quarta equação da terceira acima, resulta em,

$$Ln(F_{corr.}/F_{apar.}) = B(U_{apar.} - U_{corr.})$$
 Equação (2.15)

Dividindo a Equação 15 pela Equação 14, teremos,

$$\frac{\text{Ln}(F_{corr.}/F_{apar.})}{\text{Ln}(F_{12\%}/F_{PSF})} = \frac{(U_{apar.} - U_{corr.})}{(U_{PSF} - U_{12\%})}$$

Resolvendo,

$$Ln(F_{corr.}) = Ln(F_{apar.}) + \left(\frac{U_{apar.} - U_{corr.}}{U_{PSF} - U_{12\%}}\right) Ln \frac{F_{12\%}}{F_{PSF}}$$

Simplificando,

$$F_{corr.} = F_{apar.} + \left(\frac{U_{apar.} - U_{corr.}}{U_{PSF} - U_{12\%}}\right) \frac{F_{12\%}}{F_{PSF}}$$
 Equação (2.16)

Onde,

F_{corr.} – valor da propriedade de resistência, corrigida para 12% de teor de umidade;

F_{apar.} - valor da propriedade de resistência, no teor de umidade de ensaio;

U_{apar.} - teor de umidade de ensaio;

U_{corr.} – teor de umidade para a qual se quer corrigir os valores de ensaios;

U_{PSF} – teor de umidade de ponto de saturação das fibras. Segundo Jara (1987), o valor médio do teor de umidade do ponto de saturação das fibras de 36 espécies de madeiras brasileiras é 22,4%, com um coeficiente de variação de 12,2 %;

 $U_{12\%}$ - teor de umidade de 12%.

Na correção dos valores da resistência mecânica na flexão, na compressão e cisalhamento paralelo às fibras, para 12%, a Equação (2.16) se torna,

$$F_{corr.} = F_{apar.} + \left(\frac{U_{apar.} - 12}{22,4 - 12}\right) \frac{F_{12\%}}{F_{PSF}}$$
 Equação (2.17)

$$F_{corr.} = F_{apar.} + \left(\frac{U_{apar.} - 12}{10.4}\right) \frac{F_{12\%}}{F_{PSF}}$$
 Equação (2.18)

Logsdon (2002) fornece a seguinte equação para ajustar as propriedades mecânicas de um determinado teor de umidade para outro,

Onde,

$$F_{\text{corr.}} = F_{\text{apar.}} \left[1 + \frac{\propto (U_{\text{apar.}} - 12)}{100} \right]$$
 Equação (2.19)

A Equação (2.18) utiliza o valor médio de resistência em condição verde (saturado) e seco a 12% de teor de umidade da espécie, para uma determinada propriedade. Já a Equação (2.19) utiliza um coeficiente específico para cada propriedade, determinados para espécies de madeira brasileiras. A utilização de uma das duas equações fica, portanto condicionado a existências de dados específicos exigidos pelas equações.

Em relação a massa específica, a Equação (2.20), de correção da massa específica aparente para 12% de teor de umidade apresentada por BODIG (1982) envolve um tipo de massa específica (massa aparente/massa seca em estufa), que não é comum sua determinação nos nossos centros de pesquisas em madeira.

$$D_g = (1-\beta_u(M_f - M_a))D_a$$
 Equação (2.20)

Onde,

D_g - massa específica com massa aparente e volume verde;

 β_u - coeficiente de contração volumétrica (contração volumétrica/ponto de saturação das fibras);

M_f - ponto de saturação das fibras;

M_a - teor de umidade com que a massa específica (D_a) foi determinada;

D_a – massa específica com peso aparente e volume seco em estufa.

Para Logsdon (2002), a massa específica aparente pode ser corrigida para 12%, utilizando a Equação (2.21), que depende da contração volumétrica do teor de umidade de ensaio até 0%. Concluiu que a massa específica varia em relação às dimensões do corpo-de-prova.

$$D_{12\%} = D_{u\%} + D_{u\%} [(1 - \delta_{u\%})(12 - u\%)/100]$$
 Equação (2.21)

Para,

$$\delta_{u\%} = \frac{\Delta V}{u\%} e \Delta v = \left(\frac{V_{u\%} - V_{0\%}}{V_{0\%}}\right) 100$$

Onde,

 $D_{12\%}$ - massa específica aparente corrigida para 12% de teor de umidade;

 $D_{u\%}$ - massa específica aparente com o teor de umidade (u%) do ensaio;

u% - teor de umidade de ensaio;

 $\delta_{u\%}$ - coeficiente de retratibilidade volumétrica de u\% a 0\% de teor de umidade;

 ΔV = contração volumétrica, para a variação do teor de umidade de u% a 0%;

 $V_{u\%}$ = volume da amostra, com teor de umidade u%;

 $V_{0\%}$ = volume da amostra, com 0% de teor de umidade.

3 - MATERIAIS E MÉTODOS

Para a caracterização física e mecânica da madeira, considerando a influência de velocidades de ensaios e de dimensões de corpos-de-prova, faz-se necessária a realização de um grande número de ensaios, devido a quantidade de variáveis que envolvem todo o processo. Partindo deste pressuposto no presente estudo foram limitadas algumas condições de ensaios e propriedades, de forma a viabilizar o número de ensaios em função do tempo disponível para o desenvolvimento da pesquisa. Segundo Bendtsen (1970) são necessários pelo menos doze ensaios por propriedade de caracterização.

A definição das dimensões dos corpos-de-prova e velocidades de ensaios de caracterização teve como referência a metodologia da norma COPANT 555/73, 463/73 e 464/72 (Comisión Panamericana de Normas Técnicas), adotada pelo Laboratório de Produtos Florestais – LPF do Serviço Florestal Brasileiro do Ministério do Meio Ambiente. Assim,

as dimensões dos corpos-de-prova adotados para os ensaios foram de seções transversais 50x50 mm, decrescendo em número inteiro até 10x10 mm, resultando em cinco dimensões para cada propriedade. Dimensões muito reduzidas exigem máquinas especiais as quais estão mais sujeitas a imprecisões na obtenção do esquadro. Da mesma forma, as velocidades de ensaio foram definidas, multiplicando por dois a partir da velocidade de ensaio normalizada, resultando em 3 velocidades diferentes. A velocidade de ensaio adotada pela COPANT e ASTM D143/72 (American Standard of Testing Materials) é com velocidade de deformação constante. Velocidades muito elevadas, não permitem acompanhar o desenrolar do ensaio, principalmente com corpos-de-prova com dimensões reduzidas.

A possível influência da massa específica foi avaliada, caracterizando-se espécies de madeira de diferentes massas específicas.

A determinação das propriedades físicas não foram incluídas neste estudo devido às dimensões já reduzidas dos corpos-de-prova normalizados. A escolha dos ensaios de flexão, compressão e cisalhamento paralelo às fibras se deve a sua importância no dimensionamento de estruturas, na caracterização de espécies e na definição de usos específicos.

3.1 - Ensaios exploratórios

O ensaio exploratório permite fazer uma pré-avaliação do comportamento da madeira com a variação da velocidade de ensaio e da dimensão do corpo-de-prova. Permite também estimar o número de ensaios necessários para se ter representatividade significativa na análise estatística dos dados. A metodologia definitiva do projeto de pesquisa foi estabelecida a partir da análise estatística dos resultados destes ensaios.

3.1.1 - Ensaios exploratórios 1

As dimensões dos corpos-de-prova e velocidades de ensaios preliminares foram determinadas tomando como referência, os valores estipulados pelas normas COPANT. Foram utilizadas três vigotas medindo 10x20x320 cm da espécie de madeira muiratinga (*Maquira sclerophylla*), com massa específica básica de 520 g/cm³ e teor de umidade de 12%.

Os corpos-de-prova foram climatizados durante 30 dias em ambiente com 65% de umidade relativa e 21° C de temperatura, de acordo com a norma COPANT 459/72. Na confecção

dos corpos-de-prova não foi feito o controle de orientação dos anéis de crescimento em relação ao plano de aplicação de cargas.

A Tabela 3.2 mostra as velocidades de ensaios e as dimensões dos corpos-de-prova para os quatro corpos-de-prova de cada tipo de ensaio das três propriedades de resistência a serem determinadas.

Tabela 3.2 - Velocidades de ensaios e dimensões dos corpos-de-prova utilizados na caracterização de resistência da muiratinga (*Maquira sclerophylla*).

	Velocidade	2,50 mm/min	5,00 mm/min	7,50 mm/min
Flexão		50x50x750 mm	50x50x750 mm	50x50x750 mm
estática	Dimensão	30x30x450 mm	30x30x450 mm	30x30x450 mm
		10x10x150 mm	10x10x150 mm	10x10x150 mm
	Velocidade	0,60 mm/min	1,20 mm/min	1,80 mm/min
	Dimensão	50x50x200 mm	50x50x200 mm	50x50x200 mm
C				
Compressão - paralela às -	Velocidade	0,36 mm/min	0,72 mm/min	1,08 m/min
fibras	Dimensão	30x30x120 mm	30x30x120 mm	30x30x120 mm
1101 as				
	Velocidade	0,12 mm/min	0,24 mm/min	0,36 m/min
	Dimensão	10x10x40 mm	10x10x40 mm	10x10x40 mm
Cicalhamanta	Velocidade	0,6 mm/min	1,2 mm/min	1,8 mm/min
Cisalhamento		50x50x65 mm	50x50x65 mm	50x50x65 mm
paralelo às	Dimensão	30x30x45 mm	30x30x45 mm	30x30x45 mm
fibras		10x10x25 mm	10x10x25 mm	10x10x25 mm

Os resultados apresentados nas Tabelas 3.3 a 3.6 mostram que para diferentes velocidades os valores dos coeficientes de variação das resistências são menores do que para diferentes dimensões. Isto pode ser verificado comparando a última coluna com a última linha das Tabelas. Com três dimensões não foi possível tirar conclusões sobre o comportamento da madeira para as propriedades em estudo. A análise de variância utilizando o programa estatístico SPSS 13.0, mostrou que para três dimensões houve variação significativa na resistência a um nível de 5% de exclusão. Para a velocidade, não houve diferença significativa na resistência a um nível de 5% de exclusão

Tabela 3.3 - Valor médio da tensão de ruptura na flexão estática e coeficiente de variação para a madeira da espécie muiratinga (*Maquira sclerophylla*).

Flexão Estática	2,5 mm/min	5,0 mm/min	7,5 mm/min	Valor médio das velocidades
50x50x750 mm				_
Valor médio	91,4 MPa	95,1 MPa	89,6 MPa	92,0 MPa
Coef. de				
variação	7,2 %	10,9 %	6,5 %	3,0 %
30x30x450 mm				
Valor médio	110,3 MPa	110,7 MPa	98,8 MPa	96,6 MPa
Coef. de				
variação	8,4 %	8,1 %	18 %	6,3 %
10x10x150 mm				
Valor médio	140,6 MPa	144,4 MPa	138,5 MPa	141,2 MPa
Coef. de				
variação	7,3 %	11,2 %	9,6 %	2,1 %
Valor médio				
das dimensões	114,1 MPa	116,7 MPa	109,0 MPa	-
Coef. de				-
variação	21,7%	21,6 %	23,9 %	

Tabela 3.4 - Valor médio do módulo de elasticidade na flexão estática e coeficiente de variação para a madeira da espécie muiratinga (*Maquira sclerophylla*).

Flexão Estática	2,5 mm/min	5,0 mm/min	7,5 mm/min	Valor médio das velocidades
50x50x750 mm				
Valor médio	10 756 MPa	10 815 MPa	10 720 MPa	10 703 MPa
Coef. de				
variação	6 %	4 %	3 %	1 %
30x30x450 mm				
Valor médio	12 935 MPa	13 195 MPa	13 166 MPa	13 099 MPa
Coef. de				
variação	7 %	6 %	9 %	1 %
10x10x150 mm				
Valor médio	16 747 MPa	17 058 MPa	15 464 MPa	16 423 MPa
Coef. de				
variação	15 %	12 %	2 %	5 %
Valor médio				
das dimensões	13 479 MPa	13 689 MPa	13 117 MPa	-
Coef. de				-
variação	22 %	23 %	18 %	

Tabela 3.5 - Valor médio da tensão de ruptura na compressão paralela às fibras e coeficiente de variação para a madeira da espécie muiratinga (*Maquira sclerophylla*).

Corpo-de-prova	0,6 mm/min	6 mm/min 1,2 mm/min 1,8 mm/min		Valor médio das velocidades
50x50x200 mm				das velocidades
Valor médio	61,0 MPa	64,0 MPa	61,3 MPa	62,1 MPa
Coef. de	01,0 1411 u	01,011111	01,5 WII u	02,1 WH u
variação	1,7 %	1,8 %	5,7 %	2,7 %
	0,36 mm/min	0,72 mm/min	1,08 mm/min	-
30x30x120 mm				
Valor médio	63,4 MPa	64,4 MPa	61,8 MPa	63,2 MPa
Coef. de				
variação	2,9 %	7,2 %	8,6 %	2,1 %
	0,12 mm/min	0,24 mm/min	0,36 mm/min	
10x10x40 mm				
Valor médio	52,9 MPa	55,0 MPa	52,4 MPa	53,4 MPa
Coef. de				
variação	5,6 %	3,2 %	8,0 %	2,6 %
Valor médio				
das dimensões	59,1 MPa	61,1 MPa	58,5 MPa	-
Coef. de				-
variação	10,2 %	8,7 %	9,0 %	

Tabela 3.6 - Valor médio da tensão de ruptura no cisalhamento paralelo às fibras e coeficiente de variação para a madeira da espécie muiratinga (*Maquira sclerophylla*).

Corpo-de-prova	0,6 mm/min	1,2 mm/min	1,8 mm/min	Valor médio das velocidades
50x50x65 mm				
Valor médio	9,6 MPa	8,4 MPa	9,9 MPa	9,3 MPa
Coef. de	14,9 %	25,9 %	12,7 %	8,5 %
<u>variação</u>				
30x30x45 mm				
Valor médio	11,6 MPa	12,1 MPa	14,3 MPa	12,7 MPa
Coef. de	16,5 %	11,6 %	17,0 %	11,3 %
variação				
10x10x25 mm				
Valor médio	11,0 MPa	15,1 MPa	10,7 MPa	12,6 MPa
Coef. de	26,4 %	11,3 %	29,3 %	20,0 %
<u>variação</u>				
Valor médio				
das dimensões	10,7 MPa	11,9 MPa	11,6 MPa	-
Coef. de	9,6 %	28,3 %	21,2 %	-
variação				

3.1.2 - Ensaios exploratórios 2

Uma nova série de ensaios foi realizada, fixando uma velocidade para cinco dimensões diferentes, para avaliar a existência de uma possível tendência nos resultados de resistência. A espécie de madeira utilizada nesta etapa foi o breu sucuruba (*Protium heptaphyllum*), que possui massa específica básica de 550 g/m³. As novas dimensões dos corpos-de-prova para os ensaios são específicadas a seguir.

Flexão estática- 5,0 mm/min para todas as dimensões;

- 50x50x750 mm
 - 40x40x600 mm
 - 30x30x450 mm
 - 20x20x300 mm
 - 10x10x150 mm

Compressão paralela às fibras - A velocidade depende do comprimento do corpo-de-prova;

- 50x50x200 mm 1,20 mm/min
- 40x40x160 mm 0,96 mm/min
- 30x30x120 mm 0,72 mm/min
- 20x20x80 mm 0,48 mm/min
- -10x10x40 mm 0.24 mm/min

Cisalhamento paralelo às fibras - 1,2 mm/min para todas as dimensões.

- 50x50x65 mm
- 40x40x55 mm
- -30x30x45 mm
- 20x20x35 mm
- 10x10x25 mm

Os resultados de resistência apresentados nas Tabelas 3.7 a 3.10 mostram que não houve variações significativas nos valores dos coeficientes de variação das resistências para as cinco dimensões diferentes, com uma mesma velocidade. O número de corpos-de-prova foi maximizado dentro das limitações impostas pelas dimensões da prancha disponível, resultando de 4 a 12 corpos-de-prova por dimensão. A análise de variância utilizando o programa SPSS 13.0, mostra que houve variação nos valores de resistência a um nível de 5% de exclusão.

Tabela 3.7 - Valor médio da tensão de ruptura na flexão estática e coeficiente de variação para a madeira da espécie breu sucuruba (*Protium heptaphyllum*).

Corpo-de-	50x50x750	40x40x600	30x30x450	20x20x300	10x10x150	Valor médio
prova	mm	mm	mm	mm	mm	das dimensões
Valor médio	102,7 MPa	99,3 MPa	101,6 MPa	86,5 MPa	109,5 MPa	99,4 MPa
Coef. de variação	4,9 %	8,5 %	4,8 %	7,3 %	7,9 %	11,1 %

Tabela 3.8 - Valor médio do módulo de elasticidade na flexão estática e coeficiente de variação para a madeira da espécie breu sucuruba (*Protium heptaphyllum*).

Corpo-de-	50X50X750	40x40x600	30x30x450	20x20x300	10x10x150	Valor médio
prova	mm	mm	mm	mm	mm	das dimensões
Valor médio	8 814 MPa	10 358 MPa	10 370 MPa	10 370 MPa	10 253 MPa	9 744 MPa
Coef. de variação	4,9 %	2,4 %	7,1 %	7,1 %	7,1 %	9,4 %

Tabela 3.9 - Valor médio da tensão de ruptura na compressão paralela às fibras e coeficiente de variação para a madeira da espécie breu sucuruba (*Protium heptaphyllum*).

x20x80 10x10 mm mn	
mm mn	n Mádia das
	ii Media das
8 m/min 0,24 mn	m/min dimensões
6,3 MPa 43,3 M	MPa 42,0 MPa
4,7 % 9,3 9	% 8,6 %
	5,3 MPa 43,3 N

Tabela 3.10 - Valor médio da tensão de ruptura no cisalhamento paralelo às fibras e coeficiente de variação para a madeira da espécie breu sucuruba (*Protium heptaphyllum*).

Corpo-de- prova	50x50x65 mm	40x40x55 mm	30x30x45 mm	20x20x35 mm	10x10x25 mm	Média das dimensões
Valor médio	9,9 MPa	10,7 MPa	10,6 MPa	11,3 мРа	11,7 MPa	11,0 MPa
Coef. de variação	9,8 %	12,5 %	12,8 %	15,8 %	15,3 %	14,4 %

3.2 - Ensaios de caracterização mecânica de espécies de madeiras

Pelo exposto anteriormente foram realizados ensaios de caracterização nas solicitações de flexão estática, compressão paralela às fibras e cisalhamento paralelo às fibras, em corposde-prova com teor de umidade em torno de 12% e velocidade de deformação constante.

O ensaio de flexão, de acordo com os procedimentos da norma COPANT 555/73 é realizado em corpos-de-prova de seção transversal de 50x50 mm, utilizando esquema estático de viga isostática bi apoiada com carga concentrada central, relação vão livre/altura do corpo-de-prova de 14 e com velocidade de ensaio de 2,5 mm/min onde são determinados a tensão de ruptura e o módulo de elasticidade.

O ensaio de compressão paralela às fibras, de acordo com os procedimentos da norma COPANT 463/73 é realizado em corpos-de-prova de seção 50x50x200 mm, e com velocidade de ensaio de 0,60 mm/min onde são determinados a tensão de ruptura e o módulo de elasticidade.

O ensaio de cisalhamento paralelo às fibras, de acordo com os procedimentos da norma COPANT 464/72 é realizado em corpos-de-prova de seção 50x50x65 mm, e com velocidade de ensaio de 0,60 mm/min onde é determinado a tensão de ruptura. Os corpos-de-prova de seção transversal de 10x10 mm, foram excluídos devido as dificuldades encontradas, durante a realização dos ensaios exploratórios, na sua confecção, na identificação e orientação dos anéis de crescimento, na numeração e confecção em máquinas convencionais de carpintaria.

A flecha para determinar o módulo de elasticidade na flexão foi obtida diretamente pelo deslocamento do travessão de aplicação de carga. Assim foi feito, devido a possibilidade do surgimento de erros adicionais na leitura da flecha, com a utilização de novos equipamentos de fixação do deflectômetro, principalmente por ser necessário um equipamento para cada uma das cinco dimensões de corpos-de-prova. Seria necessário, inicialmente, verificar a precisão e calibrar cada um dos equipamentos utilizados. Portanto, os dados obtidos e apresentados servem, basicamente, de orientação para a elaboração de metodologia de ensaios para verificar a influência da variação de dimensões e de velocidades na resistência da madeira.

3.3 - Dimensões dos corpos-de-prova e velocidades de ensaios utilizados na caracterização de espécies de madeiras

As dimensões dos corpos-de-prova foram reduzidas de 50x50 mm de seção transversal até o mínimo de 10x10 mm e as velocidades de deformação constantes para os ensaios foram definidas para uma, duas e três vezes maiores do que as velocidades especificadas pela norma COPANT, conforme mostra a Tabela 3.11. Na compressão paralela às fibras, a velocidade normalizada é função do comprimento do corpo-de-prova. A velocidade foi determinada multiplicando-se o comprimento do corpo-de-prova, pela taxa de variação da deformação específica das fibras. A taxa de variação da deformação específica das fibras, recomendada pela ASTM D 198/84 e BS 5820/79 (British Standards Institution) é de 0,003 cm/min por cm de comprimento do corpo-de-prova.

Tabela 3.11 - Velocidades de ensaios e dimensões dos corpos-de-prova utilizados na caracterização.

Tipo de	Dimensão do	Vão livre Velo		ocidades de ens	ocidades de ensaios	
ensaio	corpo-de-prova			octuades de ens	aios	
Flexão estática	50x50x750 mm	700 mm				
	40x40x600 mm	560 mm				
	30x30x450 mm	420 mm	2,50 mm/min	5,00 mm/min	7,50 mm/min	
	20x20x300 mm	240 mm				
	10x10x150 mm	140 mm				
Compressão	50x50x200 mm	0,60 mm/min		1,20 mm/min	1,80 mm/min	
paralela às	40x40x160 mm	0,48	mm/min	0,96 mm/min	1,44 mm/min	
fibras	30x30x120 mm	0,36	mm/min	0,72 mm/min	1,08 mm/min	
	20x20x80 mm	0,24	mm/min	0,48 mm/min	0,72 mm/min	
	10x10x40 mm	0,12	mm/min	0,24 mm/min	0,36 mm/min	
Cisalhamento	50x50x65 mm					
paralelo às	40x40x55 mm		0.60 mm/min	1.20 mm/min	1 00 mm/min	
fibras	30x30x45 mm		0,60 mm/min	1,20 mm/min	1,80 mm/min	
	20x20x35 mm					

3.4 - Condições de umidade dos corpos-de-prova de ensaios de caracterização de espécies de madeiras

A opção por ensaios com madeira seca foi definida em função da oferta no mercado de madeira seca em torno de 12% de teor de umidade em pranchas com dimensões tais que seria possível retirar todos os corpos-de-prova por dimensões e velocidades de ensaios numa mesma prancha.

3.5 - Espécies de madeira utilizadas na caracterização

A influência de dimensões de corpos-de-prova e velocidades de ensaios na caracterização foi verificada utilizando madeiras de diferentes massa específica básica. As três espécies de madeira foram obtidas em pranchas com as dimensões necessárias para que todos os corpos-de-prova por dimensões e velocidades de ensaios pudessem ser retirados numa mesma prancha. Os corpos-de-prova foram demarcados nas pranchas de madeira de forma aleatória em relação a sua largura e comprimento.

As espécies foram identificadas pela área de anatomia da madeira do LPF como sendo, cumaru (*Dipterix odorata*), jequitibá (*Allantoma lineata*) e quaruba (*Vochyisia guianensis*). As propriedades físicas e mecânicas dessas espécies, caracterizadas pelo LPF, utilizando a norma COPANT/72, são mostradas nas Tabelas 3.12 e 3.13.

Tabela 3.12 - Propriedades físicas e mecânicas das espécies caracterizadas.

Espécie de	Teor de	Massa específica básica	Flexão	estática	Compressão paralela às fibras	Cisalhamento paralelo às fibras
madeira umidade	umidade	kg/m ³	Tensão de Módulo de ruptura elasticidade (MPa) (MPa)		Tensão de ruptura (MPa)	
Dipterix	Verde		136,4	16 200	69,3	16,9
odorata cumaru	12%	910	176,4	18 300	98,7	22,4
Allantoma	Verde		66,1	10 200	28,9	8,1
<i>lineata</i> jequitibá	12%	600	117,1	13 000	59,1	-
Vochysia	Verde		71,4	11 500	29,6	7,1
<i>guianensis</i> quaruba	12%	540	123,7	14 300	66,6	12,5

Tabela 3.13 - Propriedades físicas das espécies caracterizadas.

Espécie de		issa cífica	Contração tangencial	Contração radial	Contração volumétrica	Textura/Grã
madeira	a 12%	básica				Textura/Gra
	kg	/m ³	%	%	%	
Dipterix odorata cumaru	1090	910	8,4	5,4	13,5	média/revessa
Allantoma lineata jequitibá	750	600	7,5	5,5	11,6	fina/irregular
Vochysia guianensis quaruba	660	540	11,5	5,0	17,5	média a grossa/revessa

3.6 - Amostragem nas pranchas das espécies de madeiras

Os corpos-de-prova foram demarcados nas pranchas de madeira de forma aleatória em relação a sua largura e comprimento.

As pranchas da espécie jequitibá e quaruba, não apresentaram as dimensões necessárias para se obter todos os corpos-de-prova para as cinco dimensões e para as três velocidades de ensaios, numa mesma prancha. Utilizou-se da alta correlação da massa específica com as propriedades de resistência para agrupar as pranchas para cada tipo de ensaio. De cada prancha, foi retirada uma amostra de 50 mm de comprimento, pela sua seção transversal, para a determinação da massa específica aparente. As amostras ficaram durante quinze dias

em ambiente de 65% de umidade relativa e 20° C. de temperatura para uniformizar o teor de umidade. As pranchas foram agrupadas pelas massas específicas aparentes com mesmos teores de umidades.

3.7 - Tamanho da amostra

O número de corpos-de-prova necessários para caracterização numa amostragem aleatória depende da precisão desejada e da variabilidade da população amostrada. Sua estimativa é feita com base no valor médio e no erro padrão obtido em ensaios preliminares, a partir de uma probabilidade específica. O número de ensaios realizados para cada dimensão do corpo-de-prova e velocidade de ensaio das três propriedades foi superior ao número mínimo estimado no item 2.3, da revisão bibliográfica, com a probabilidade de confiança de 95%.

3.8 - Preparação e climatização dos corpos-de-prova de ensaios de caracterização mecânica

Os corpos-de-prova foram preparados na carpintaria do LPF e posteriormente colocados em ambiente climatizado (65 ± 1)% de umidade relativa e (20 ± 3) °C de temperatura) para uniformização e estabilização com teor de umidade de 12%, de acordo com a norma COPANT 459/72. A sua preparação foi acompanhada de forma a se obter precisão, ausência de defeitos e esquadro nas dimensões finais. Os corpos-de-prova para flexão e cisalhamento foram preparados com os anéis orientados em relação a uma das faces. No ensaio de flexão, a força foi aplicada na face tangencial e no ensaio de cisalhamento paralelo às fibras, a força foi aplicada na face radial para 50% dos corpos-de-prova e na face tangencial para os outros 50%.

3.9 - Realização dos ensaios de caracterização mecânica

Os ensaios foram realizados em máquina universal INSTRON, modelo 1127, com capacidade de carga de 20.000 kgf, desenvolvida para determinar a resistência de materiais, como a madeira. Os ensaios com corpos-de-prova de seção transversal com 50x50 mm, da espécie de madeira Cumaru, foram feitos em máquina universal EMIC com capacidade de carga de 30.000 kgf, do Departamento de Engenharia Florestal, da Universidade de Brasília. Os corpos-de-prova com 50x50 mm de seção transversal suportam em torno de 25.000 kgf.

A unidade de força medida na INSTRON (kgf) foi convertida em Newton (N) e os resultados apresentados em megapascal (MPa). Os ensaios foram realizados de acordo com

as normas ASTM D - 143/72 e COPANT/72. Antes de cada ensaio, a massa do corpo-deprova foi determinada em balança Sauter com precisão de 0,1 g, colocado em estufa a 105°C, até massa constante, para a determinação do teor de umidade. O ensaio de flexão foi feito com esquema estático de viga bi apoiada com carga concentrada central, aplicada na face radial. No cisalhamento paralelo às fibras, metade dos ensaios foi realizado com a carga aplicada na direção tangencial e a outra metade na direção radial.

4 - RESULTADOS E DISCUSSÃO

Os resultados da pesquisa serão apresentados em forma de tabelas e gráficos de forma a facilitar o seu entendimento e sua interpretação. Os valores numéricos individuais dos ensaios e detalhamento da análise estatística são apresentados em Apêndices.

4.1 - Correção dos resultados dos ensaios de caracterização mecânica

Existe a necessidade de se ajustar as propriedades mecânicas para um determinado teor de umidade porque a resistência da madeira varia com o teor de umidade de ensaio.

Como o teor de umidade dos ensaios realizados ficou muito próximo de 12%, os valores de resistência corrigidos pelas Equações (2.16) e (2.19) do item 2.4, da revisão bibliográfica, não tiveram grandes alterações. Desta forma, optou-se por analisar os dados de caracterização, sem fazer correção da resistência pela umidade. Contribuiu para esta opção, a origem da Equação (2.16) de uma função exponencial muito generalizada e a Equação (2.19) ter sido desenvolvida a partir da caracterização de poucas espécies de madeira.

4.2 - Resultados dos ensaios de caracterização mecânica

As Tabelas 4.14 a 4.25 mostram o valor médio de resistência com teor de umidade de 12%, o número de corpos-de-prova e a duração do ensaio para as três propriedades caracterizadas.

As Figuras 4.19 a 4.26, colocadas após a análise estatística dos dados de ensaios, nos itens 4.4.2 e 4.4.3 permitem visualizar a tendência da resistência e da sua variabilidade em relação às dimensões, bem como, mostram o agrupamento das dimensões de seção transversal com mesma resistência. Os resultados individuais dos ensaios, bem como seu valor médio e coeficiente de variação, são apresentados nos Apêndices A a D.

4.2.1 - Valores médios dos ensaios da espécie cumaru - Dipterix odorata

Para os valores médios de resistência do módulo de elasticidade não é possível verificar uma tendência crescente ou decrescente da resistência com às diferentes dimensões de

corpos-de-prova. Na tensão de ruptura na flexão e cisalhamento paralelo às fibras é possível verificar uma pequena tendência crescente na resistência em relação às diferentes dimensões de corpos-de-prova. Para a compressão paralela às fibras se verifica uma pequena tendência decrescente da resistência em relação às diferentes dimensões de corpos-de-prova. Em relação as velocidades, os valores médios de resistência não apresentaram nenhuma tendência para o ensaio de compressão paralela às fibras. As tabelas 4.14 a 4.17 mostram estas tendência.

Tabela 4.14 - Flexão estática - Valor médio do módulo de elasticidade e da duração do ensaio para a madeira do cumaru.

•						
Flexão estática	Módulo de	Tempo	Módulo de	Tempo	Módulo de	Tempo
	elasticidade	de ensaio	elasticidade	de ensaio	elasticidade	de ensaio
Velocidade	2,5 mm	/min	5,0 mm	/min	7,5 mm	/min
50x50x750 mm		9.6 :		15 .		20 .
Valor médio	12 350 MPa	8,6 min	12 573 мРа	4,5 min	12 374 MPa	3,0 min
*N	8		9		10	
40x40x600 mm		6.4 ·		2.1 .		22 .
Valor médio	15 507 MPa	6,4 min	14 472 MPa	3,1 min	14 476 MPa	2,2 min
*N	12		13		13	
30x30x450 mm		6,0 min		2,8 min		1,9 min
Valor médio	14 532 MPa	0,0 min	14 601 MPa	2,0 min	14 687 MPa	1,9 min
*N	12		12		12	
20x20x300 mm		27 .		10 .		1.2 .
Valor médio	15 271 MPa	3,7 min	15 098 MPa	1,9 min	14 859 MPa	1,3 min
*N	13		16		15	
10x10x150 mm		2.0:		1 1:		0.7:
Valor médio	14 010 MPa	2,0 min	13 087 MPa	1,1 min	12 743 MPa	0,7 min
*N	17		16		15	

^{*}N = número de corpos-de-prova.

Tabela 4.15 - Flexão estática - Valor médio da tensão de ruptura e da duração do ensaio para a madeira do cumaru.

Flexão estática	Tensão de	Tempo	Tensão de	Tempo	Tensão de	Tempo
	ruptura	de ensaio	ruptura	de ensaio	ruptura	de ensaio
Velocidade	2,5 mm	n/min	5,0 mn	n/min	7,5 mm	n/min
50x50x750 mm		06.		15 ·		2.0 :
Valor médio	139,6 мРа	8,6 min	144,0 MPa	4,5 min	138,1 MPa	3,0 min
*N	8		9		10	
40x40x600 mm		61:		2.1 ·		2.2 ·
Valor médio	169,1 MPa	6,4 min	153,5 MPa	3,1 min	158,4 MPa	2,2 min
*N	12		13		13	
30x30x450 mm		60 :		20 .		1.0 .
Valor médio	158,1 MPa	6,0 min	161,1 MPa	2,8 min	160,4 MPa	1,9 min
*N	12		12		12	
20x20x300 mm		27 .		10 .		1.2 ·
Valor médio	165,0 MPa	3,7 min	159,1 MPa	1,9 min	163,9 MPa	1,3 min
*N	13		16		15	
10x10x150 mm		2.0 mir		1 1 min		0.7 mis
Valor médio	163,7 MPa	2,0 min	166,6 MPa	1,1 min	164,0 MPa	0,7 min
*N	17		15		15	
*N - múmana da aama	aa da muaria	•	•	•		

^{*}N = número de corpos-de-prova.

Tabela 4.16 - Compressão paralela às fibras - Valor médio da tensão de ruptura e da duração do ensaio para a madeira do cumaru.

Compressão paralela às fibras	Tensão de ruptura	Tempo de ensaio	Tensão de ruptura	Tempo de ensaio	Tensão de ruptura	Tempo de ensaio
Velocidade	0,60 mr	m/min	1,20 mi	m/min	1,80 m	m/min
50x50x200 mm		5,8 min		2,9 min		1,9 min
Valor médio	81,1 MPa		81,6 MPa		83,4 MPa	
*N	14		15		15	
Velocidade	0,48 mr	n/min	0,96 mi	m/min	1,44 m	m/min
40x40x160 mm		7,1 min		2,3 min		2,3 min
Valor médio	79,3 MPa		79,7 MPa		82,7 MPa	
*N	14		13		13	
Velocidade	0,36 mm/min		0,72 mi	0,72 mm/min		m/min
30x30x120 mm		7,2 min		3,6 min		2,5 min
Valor médio	79,2 MPa		79,2 MPa		80,9мРа	
*N	18		14		15	
Velocidade	0,24 mr	n/min	0,48 mi	0,48 mm/min		m/min
20x20x80 mm		8,5min		4,4 min		2,8 min
Valor médio	76,0 MPa		77,6 MPa		82,7 MPa	
*N	24		23		24	
Velocidade	0,12 mr	n/min	0,24 mi	m/min	0,36 m	m/min
10x10x40 mm		9,6 min		4,9 min		3,1 min
Valor médio	80,6 MPa		82,0 MPa		81,8 MPa	
*N	24		23		23	

^{*}N = número de corpos-de-prova.

Tabela 4.17 - Cisalhamento paralelo às fibras - Valor médio da tensão de ruptura e da duração do ensaio para a madeira do cumaru.

Cisalhamento paralelo às fibras	Tensão de ruptura	Tempo de ensaio	Tensão de ruptura	Tempo de ensaio	Tensão de ruptura	Tempo de ensaio
Velocidade	0,6 mm/min		1,2 mm/min		1,8 mm/min	
50x50x65 mm Valor médio *N	18,4 MPa 16	3,0 min	18,0 MPa 16	1,4 min	18,5 MPa 16	1,0 min
40x40x55 mm Valor médio *N	18,9 MPa 16	2,5 min	19,3 MPa 17	1,3 min	20,2 MPa 16	0,9 min
30x30x45 mm Valor médio *N	20,1 MPa 26	2,3 min	18,1 MPa 26	1,1 min	17,8 MPa 27	0,8 min
20x20x35 mm Valor médio *N	20,6 MPa 26	1,9 min	20,9 MPa 26	0,9 min	21,7 MPa 25	0,6 min

^{*}N = número de corpos-de-prova.

4.2.2 - Valores médios dos ensaios da espécie jequitibá - Allantoma lineata

Para os valores médios de resistência do módulo do elasticidade na flexão, compressão paralela às fibras e cisalhamento paralelo às fibras não houve tendência de variação da resistência com a diminuição das dimensões dos corpos-de-prova.

Já para a tensão de ruptura na flexão se verifica uma pequena tendência crescente da resistência em relação às diferentes dimensões de corpos-de-prova. Em relação as velocidades, os valores médios de resistência não apresentaram nenhuma tendência para o ensaio de compressão paralela às fibras. As tabelas 4.18 a 4.21 mostram estas tendência.

Tabela 4.18 - Flexão estática - Valor médio do módulo de elasticidade e da duração do ensaio para a madeira do jequitibá.

Flexão Estática	Módulo de elasticidade	Tempo de ensaio	Módulo de elasticidade	Tempo de ensaio	Módulo de elasticidade	Tempo de ensaio
Velocidade	2,5 mm/min		5,0 mm/min		7,5 mm/min	
50x50x750 mm Valor médio *N	9 021 MPa 9	11,1 min	8 623 MPa 10	5,8 min	8 538 MPa 10	3,9 min
40x40x600 mm Valor médio *N	10 122 MPa 11	7,9 min	10 606 MPa 10	3,7 min	10 689 мРа 10	2,3 min
30x30x450 mm Valor médio *N	10 706 MPa 15	6,2 min	10 761 MPa 16	3,2 min	10 550 мРа 15	2,1 min
20x20x300 mm Valor médio *N	10 441 MPa 26	4,1 min	10 274 MPa 25	2,0 min	10 189 мРа 24	1,4 min
10x10x150 mm Valor médio *N	10 183 мРа 24	2,1 min	9 259 MPa 23	1,2 min	9 962 MPa 24	0,7 min

^{*}N = número de corpos-de-prova.

Tabela 4.19 - Flexão estática - Valor médio da tensão de ruptura e da duração do ensaio para a madeira do jequitibá.

Flexão Estática	Tensão de ruptura	Tempo de ensaio	Tensão de ruptura	Tempo de ensaio	Tensão de ruptura	Tempo de ensaio
Velocidade	2,5 mr	n/min	5,0 mm	n/min	7,5 mm	n/min
50x50x750 mm Valor médio *N	94,5 MPa 9	11,1 min	97,5 MPa 10	5,8 min	97,0 MPa 10	3,9 min
40x40x600 mm Valor médio *N	91,9 MPa 11	7,9 min	93,3 MPa 10	3,7 min	93,5 MPa 10	2,3 min
30x30x450 mm Valor médio *N	96,7 MPa 15	6,2 min	97,0 MPa 16	3,2 min	95,0 MPa 15	2,1 min
20x20x300 mm Valor médio *N	94,0 MPa 26	4,1 min	95,0 MPa 25	2,0 min	95,7 MPa 24	1,4 min
10x10x150 mm Valor médio *N	111,7 MPa 24	2,1 min	108,2 MPa 23	1,2 min	105,3 MPa 24	0,7 min

^{*}N = número de corpos-de-prova.

Tabela 4.20 - Compressão paralela às fibras - Valor médio da tensão de ruptura e da duração do ensaio para a madeira do jequitibá.

Compressão paralela	Tensão de	Tempo de	Tensão de	Tempo	Tensão	Tempo
às fibras	ruptura	ensaio	ruptura	de ensaio	de ruptura	de ensaio
Velocidade	0,60 m	m/min	1,20 mm	n/min	1,80 mr	n/min
50x50x200 mm Valor médio	45,9 MPa	4,8 min	47,2 MPa	2,3 min	47,4 MPa	1,6 min
*N	11		14		13	
Velocidade	0,48 m	m/min	0,96 mn	n/min	1,44 mr	n/min
40x40x160 mm Valor médio	45,0 MPa	4,9 min	45,8 MPa	2,5 min	47,9 MPa	1,7 min
*N	15		15		14	
Velocidade	0,36 m	m/min	0,72 mn	n/min	1,08 mr	n/min
30x30x120 mm Valor médio	45,0 MPa	6,0 min	47,8 MPa	2,7 min	49,1 MPa	2,0 min
*N	15		15		15	
Velocidade	0,24 m	m/min	0,48 mn	n/min	0,72 mr	n/min
20x20x80 mm Valor médio *N	45,6 MPa	7,2 min	47,7 MPa	3,6 min	48,0 MPa	2,3 min
·	15		15		15	/
Velocidade	0,12 m	m/mn	0,24 mn	n/min	0,36 mr	11/111111
10x10x40 mm Valor médio *N	43,9 мРа 15	9,5 min	45,5 MPa 15	5,1 min	46,6 мРа 15	3,5 min
	1.5		1.5		1.0	

^{*}N = número de corpos-de-prova.

Tabela 4.21 - Cisalhamento paralelo às fibras - Valor médio da tensão de ruptura e da duração do ensaio para a madeira do jequitibá.

Cisalhamento paralelo às fibras	Tensão de ruptura	Tempo de ensaio	Tensão de ruptura	Tempo de ensaio	Tensão de ruptura	Tempo de ensaio
Velocidade	0,6 mm	/min	1,2 mm	n/min	1,8 mm	/min
50x50x65 mm Valor médio *N	9,0 MPa 14	2,9 min	9,3 MPa 14	1,4 min	9,4 MPa 13	1,0 min
40x40x55 mm Valor médio *N	8,8 MPa 13	2,6 min	8,9 MPa 13	1,4 min	9,0 MPa 13	0,9 min
30x30x45 mm Valor médio *N	9,9 MPa 14	2,2 min	9,7 MPa 14	2,2 min	10,0 MPa 13	0,7 min
20x20x35 mm Valor médio *N	9,5 MPa 17	2,1 min	9,0 MPa 17	1,1 min	9,3 MPa 16	0,6 min

^{*}N = número de corpos-de-prova.

4.2.3 - Valores médios dos ensaios da espécie quaruba - Vochyisia guianensis

Para os valores médios de resistência do módulo do elasticidade e tensão de ruptura na flexão e cisalhamento paralelo às fibras não houve tendência aparente de variação da resistência com a diminuição das dimensões dos corpos-de-prova.

Para a compressão paralela às fibras houve uma pequena tendência decrescente da resistência com a diminuição das dimensões dos corpos-de-prova. As tabelas 4.22 a 4.25 mostram estas tendência.

Tabela 4.22 – Flexão estática - Valor médio do módulo de elasticidade e da duração do ensaio para a madeira da quaruba.

Flexão Estática	Módulo de	Tempo	Módulo de	Tempo	Módulo de	Tempo
	elasticidade	de ensaio	elasticidade	de ensaio	elasticidade	de ensaio
Velocidade	2,5 mm	/min	5,0 mm	/min	7,5 mm	/min
50x50x750 mm		75 .		27 .		2.5 :
Valor médio	7 984 MPa	7,5 min	7 652 MPa	3,7 min	7 735 MPa	2,5 min
*N	7		7		8	
40x40x600 mm		67 .		2.1 .		22 .
Valor médio	8 519 мРа	6,7 min	8 583 MPa	3,1 min	8 525 MPa	2,3 min
*N	12		12		12	
30x30x450 mm		5,0 min		2,4 min		1,7 min
Valor médio *N	8 485 MPa	3,0 11111	8 413 MPa	2,4 111111	7 931 MPa	1,7 111111
valor medio iv	9		10		10	
20x20x300 mm		3,5 min		1,5 min		1,1 min
Valor médio	9 078 MPa	3,3 11111	8 863 MPa	1,5 11111	8 734 MPa	1,1 111111
*N	10		10		11	
10x10x150 mm		1,8 min		0,9 min		0,6 min
Valor médio	9 531 MPa	1,0 mm	9 385 MPa	U,7 min	8 962 MPa	o,o min
*N	18		20		22	

^{*}N = número de corpos-de-prova.

Tabela 4.23 - Flexão estática - Valor médio da tensão de ruptura e da duração do ensaio para a madeira da quaruba.

Flexão Estática	Tensão de ruptura	Tempo de ensaio	Tensão de ruptura	Tempo de ensaio	Tensão de ruptura	Tempo de ensaio
Velocidade	2,5 mm	n/min	5,0 mm	/min	7,5 mm	/min
50x50x750 mm Valor médio *N	71,3 MPa 7	7,5 min	69,5 MPa 7	3,7 min	73,3 MPa 8	2,5 min
40x40x600 mm Valor médio *N	82,9 MPa 12	6,7 min	79,5 MPa 12	3,1 min	84,0 MPa 12	2,3 min
30x30x450 mm Valor médio *N	78,4 MPa 9	5,0 min	79,4 MPa 10	2,4 min	77,8 MPa 10	1,7 min
20x20x300 mm Valor médio *N	83,4 MPa 10	3,5 min	83,2 MPa 10	1,5 min	83,9 MPa 11	1,1 min
10x10x150 mm Valor médio *N = 20	98,1 MPa 18	1,8 min	94,6 MPa 20	0,9 min	98,1 MPa 22	0,6 min

^{*}N = número de corpos-de-prova.

Tabela 4.24 - Compressão paralela às fibras - Valor médio da tensão de ruptura e da duração do ensaio para a madeira da quaruba.

Compressão paralela às fibras	Tensão de ruptura	Tempo de ensaio	Tensão de ruptura	Tempo de ensaio	Tensão de ruptura	Tempo de ensaio	
Velocidade	0,60 m	0,60 mm/min		m/min	1,80 m	1,80 mm/min	
50x50x200 mm							
Valor médio	47,5 MPa	4,5 min	48,2 MPa	2,2 min	47,9 MPa	1,5 min	
*N	11		10		10		
Velocidade	0,48 mm/min		0,96 mi	m/min	1,44 m	m/min	
40x40x160 mm							
Valor médio	45,9 MPa	4,0 min	46,1 MPa	2,1 min	47,7 MPa	1,4 min	
*N	12		12		11		
Velocidade	0,36 m	m/min	0,72 mm/min		1,08 mm/min		
30x30x120 mm							
Valor médio	45,5 MPa	6,2 min	45,8 MPa	2,8 min	44,4 MPa	2,0 min	
*N	12		12		11		
Velocidade	0,24 m	m/min	0,48 mm/min		0,72 mm/min		
20x20x80 mm							
Valor médio	43,4 MPa	7,0 min	44,6 MPa	3,5 min	43,9 MPa	2,2 min	
*N	21		21		22		
Velocidade	0,12 m	m/min	0,24 mi	m/min	0,36 m	m/min	
10x10x40 mm							
Valor médio	39,2 MPa	10,6 min	39,9 MPa	5,9 min	40,0 MPa	3,8 min	
*N	14	•	14	•	14	•	

^{*}N = número de corpos-de-prova.

Tabela 4.25 - Cisalhamento paralelo às fibras - Valor médio da tensão de ruptura e da duração do ensaio para a madeira da quaruba.

Cisalhamento paralelo às fibras	Tensão de ruptura	Tempo de ensaio	Tensão de ruptura	Tempo de ensaio	Tensão de ruptura	Tempo de ensaio
Velocidade	0,6 mm/min		1,2 mm/min		1,8 mm/min	
50x50x65 mm Valor médio *N	10,3 MPa 13	3,2 min	10,8 мРа 15	1,6 min	10,6 MPa 14	1,4 min
40x40x55 mm Valor médio *N	10,6 мРа 21	2,6 min	10,5 мРа 21	1,4 min	10,5 MPa 21	0,9 min
30x30x45 mm Valor médio *N	10,7мРа 16	2,1 min	10,4 MPa 16	1,0 min	10,6 MPa 16	0,8 min
20x20x35 mm Valor médio *N	11,6 MPa 14	1,9 min	11,2 MPa 13	0,9 min	11,7 MPa 14	0,6 min

^{*}N = número de corpos-de-prova.

4.3 - Valores numéricos de diminuição da massa e do volume dos corpos-de-prova e do tempo de ensaios de caracterização com a redução das dimensões dos corpos-de-prova e diminuição da velocidade de ensaios

As Tabelas 4.26 a 4.28 mostram a duração média de ensaio no tempo, a massa e o volume médio do corpo-de-prova em relação às diferentes velocidades e dimensões para as três espécies de madeira caracterizadas agrupadas. A massa e volume saturados apresentam o mesmo valor numérico, porque considerou-se a massa específica verde de 1 g/cm³. O ganho em tempo de ensaio, peso e volume para transporte são bastante significativos. As Figuras 4.13 a 4.18, colocadas abaixo das respectivas tabelas permitem visualizar os ganhos com a redução das dimensões dos corpos-de-prova e aumento das velocidades de ensaio. Estes resultados reforçam a necessidade de revisão e modernização de metodologias de ensaios de caracterização da madeira.

4.3.1 - Flexão estática - Diminuição de massa, volume e tempo de ensaios com a redução das dimensões dos corpos-de-prova e diminuição da velocidade de ensaios

Tabela 4.26 - Flexão estática - Valor médio da duração do ensaio, da massa e do volume médio do corpo-de-prova para as diferentes dimensões e velocidades.

Parâmetros -		Dimensão	Dimensão da seção transversal do corpo-de-prova em mm				
		50x50	40x40	30x30	20x20	10x10	
nsaio	Velocidade 2,5 m/min	9,1	7,1	5,7	3,8	2,0	
Tempo de ensaio (min)	Velocidade 5,0 m/min	4,7	3,4	2,8	1,8	1,1	
Temp	Velocidade 7,5 m/min	3,2	2,3	1,9	1,3	0,7	
	orpo-de-prova o em água	1875 g	960 g	405 g	120 g	15 g	
	o corpo-de- ado em água	1875 cm ³	960 cm ³	405 cm ³	120 cm ³	15 cm ³	

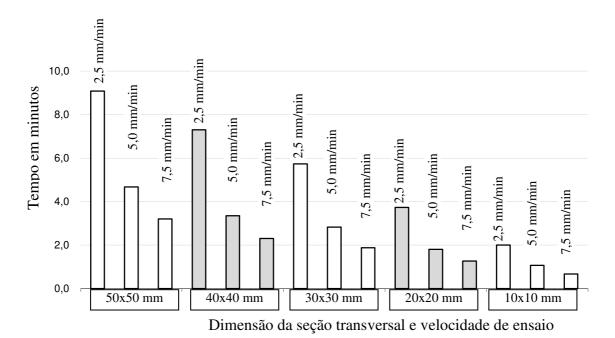


Figura 4.13 - Flexão estática - Valor médio da duração do ensaio, para as três espécies agrupadas.

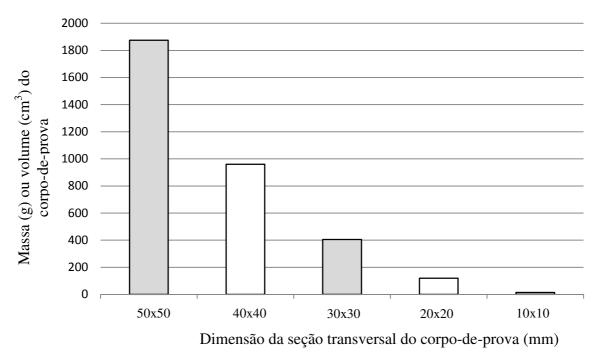
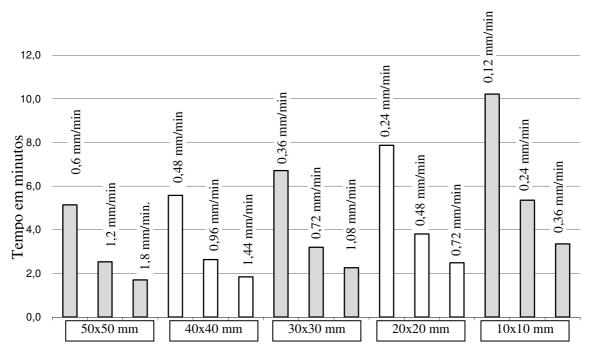
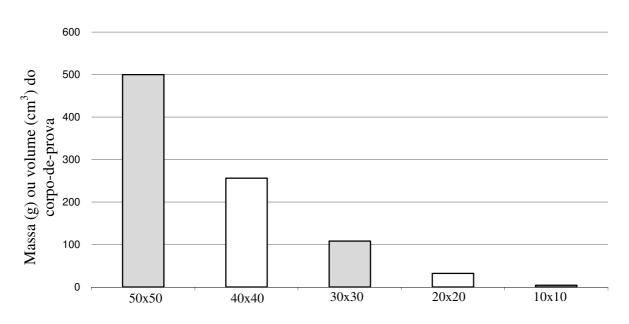



Figura 4.14 - Flexão estática – Variação do volume ou massa do corpo-de-prova.

4.3.2 - Compressão paralela às fibras - Diminuição de massa, volume e tempo de ensaios com a redução das dimensões dos corpos-de-prova e diminuição da velocidade de ensaios


Tabela 4.27 - Compressão paralela às fibras - Valor médio da duração do ensaio, da massa e do volume médio do corpo-de-prova para as diferentes dimensões e velocidades.

Parâmetros -		Dimensão da seção transversal do corpo-de-prova (mm)				
		50x50	40x40	30x30	20x20	10x10
nsaio	Velocidade 0,12 mm/min	5,2	5,6	6,7	7,9	10,1
Fempo de ensaio (min)	Velocidade 0,24 mm/min	2,6	2,7	3,2	3,8	5,4
Temp	Velocidade 0,36 mm/min	1,7	1,9	2,3	2,2	3,5
	o corpo-de-prova rado em água	500 g	256 g	108 g	32 g	4 g
	ne do corpo-de- aturado em água	500 cm ³	256 cm ³	108 cm ³	32 cm ³	4 cm ³

Dimensão da seção transversal e velocidade de ensaio

Figura 4.15 - Compressão paralela às fibras - Valor médio da duração do ensaio, para as três espécies agrupadas.

Dimensão da seção transversal do corpo-de-prova

Figura 4.16 - Compressão paralela às fibras - Variação do volume ou peso do corpo-de-prova.

4.3.3 - Cisalhamento paralelo às fibras - Diminuição de massa, volume e tempo de ensaios com a redução das dimensões dos corpos-de-prova e diminuição da velocidade de ensaios

Tabela 4.28 - Cisalhamento paralelo às fibras - Valor médio da duração do ensaio, da massa e do volume médio do corpo-de-prova para as diferentes dimensões e velocidades.

Parâmetros -		Dimensão da seção transversal do corpo-de-prova (mm)				
Fair	illetios -	50x50	40x40	30x30	20x20	
de lin)	Velocidade 0,60 m/min	3,0	2,6	2,3	1,9	
Tempo de ensaio (min)	Velocidade 1,20 m/min	1,4	1,4	1,7	1,0	
Te	Velocidade 1,80 m/min	1,0	0,9	0,8	0,6	
	orpo-de-prova o em água	162,5 g	88,0 g	40,5 g	14,0 g	
	corpo-de-prova o em água	162,5 cm ³	88,0 cm ³	40,5 cm ³	14,0 cm ³	

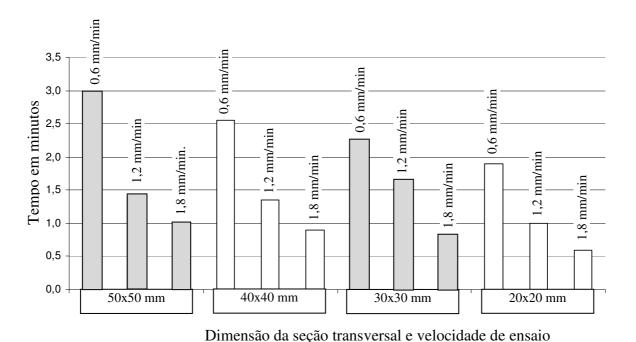


Figura 4.17 - Cisalhamento paralelo às fibras - Valor médio do tempo de duração do

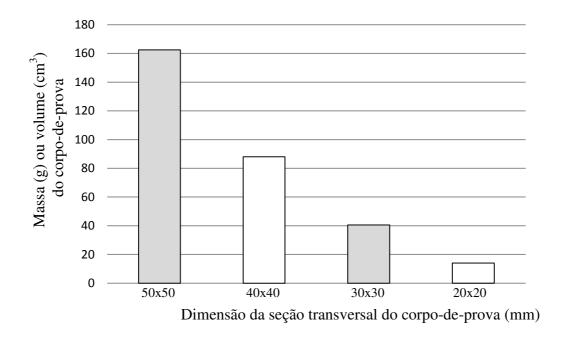


Figura 4.18 - Cisalhamento paralelo às fibras - Variação do volume ou massa do corpo-de-prova.

4.4 - Análise estatística dos resultados de ensaios de caracterização mecânica

Na análise estatística partiu-se do pressuposto que cada prancha de madeira é homogênea, isto é, não apresentam variabilidade de resistência para diferentes posições em cada prancha de madeira. Os cálculos e fórmulas para a análise da variância foram realizados pelo aplicativo de estatística SPSS (1992).

Por ser um experimento sem complexidade em relação à análise dos dados obtidos, esta se concentrou num delineamento estatístico relacionado com as características da pesquisa em questão. No caso específico do experimento fatorial, o objetivo foi verificar o efeito das velocidades de ensaio e das dimensões dos corpos-de-prova (variáveis independentes ou fatores) na resistência da madeira (variável dependente ou resposta) e se houve interação entre essas duas variáveis. Assim, o experimento teve um fator com cinco níveis (cinco dimensões de corpos-de-prova diferentes) e outro com três níveis (três velocidades de ensaios diferentes). Como todas as combinações (níveis) estão ativas e o número de níveis é diferente para cada fator, utilizou-se o fatorial completo.

As Tabelas 4.29 a 4.32 mostram o resultado da análise de variância do comportamento da resistência com as diferentes dimensões dos corpos-de-prova e velocidades de ensaios. A um nível de significância de 5%, o aumento da velocidade de ensaio até três vezes, em relação à velocidade normalizada pela COPANT, foi observada influência na resistência

mecânica, somente na compressão paralela às fibras para o jequitibá e cumaru. Já a redução das dimensões da seção transversal dos corpos-de-prova de 50x50 mm até 10x10 mm apresentou influência na resistência mecânica, para as três propriedades.

A interação entre dimensões e velocidades, na resistência, aconteceu de forma aleatória, isto é, sem tendência uniforme ou sistemática.

Tabela 4.29 - Análise de variância do módulo de elasticidade na flexão estática, com diferentes velocidades de ensaios e dimensões de corpos-de-prova.

Fonte	Cumaru		Jequitibá		Quaruba	
	Grau de liberdade	Nível de significância	Grau de liberdade	Nível de significância	Grau de liberdade	Nível de significância
Modelo	14	0,000	14	0,000	14	0,000
Intersecção	1	0,000	1	0,000	1	0,000
Dimensão do corpo-de-prova	4	0,000	4	0,000	4	0,000
Velocidade de ensaio	2	0,118	2	0,288	2	0,111
Interação (Dimensão e Velocidade)	8	0,461	8	0,004	8	0,940
Erro	177		237		163	
Total	192		252		178	

Tabela 4.30 - Análise de variância da tensão de ruptura na flexão estática, com diferentes velocidades de ensaios e dimensões de corpos-de-prova.

Fonte	Cumaru		Jequitibá		Quaruba	
	Grau de liberdade	Nível de significância	Grau de liberdade	Nível de significância	Grau de liberdade	Nível de significância
Modelo	14	0,007	14	0,000	14	0,000
Intersecção	1	0,000	1	0,000	1	0,000
Dimensão do corpo-de-prova	4	0,000	4	0,000	4	0,000
Velocidade de ensaio	2	0,797	2	0,451	2	0,465
Interação (Dimensão e Velocidade)	8	0,795	8	0,000	8	0,954
Erro	177		237		163	
Total	192		252		178	

Tabela 4.31 - Análise de variância da tensão de ruptura na compressão paralela às fibras com, diferentes velocidades de ensaios e dimensões de corpos-de-prova.

Fonte	Cumaru		Jequitibá		Quaruba	
	Grau de liberdade	Nível de significância	Grau de liberdade	Nível de significância	Grau de liberdade	Nível de significância
Modelo	14	0,000	14	0,000	14	0,000
Intersecção	1	0,000	1	0,000	1	0,000
Dimensão do corpo-de- prova	4	0,000	4	0,000	4	0,000
Velocidade de ensaio	2	0,000	2	0,000	2	0,438
Interação (Dimensão e Velocidade)	8	0,053	8	0,527	8	0,779
Erro	257		202		192	
Total	272		217		207	

Tabela 4.32 - Análise de variância da tensão de ruptura no cisalhamento paralelo às fibras, com diferentes velocidades de ensaios e dimensões de corpos-de-prova.

Fonte	Cumaru		Jequitibá		Quaruba	
	Grau de liberdade	Nível de significância	Grau de liberdade	Nível de significância	Grau de liberdade	Nível de significância
Modelo	11	0,000	11	0,002	11	0,000
Intersecção	1	0,000	1	0,000	1	0,000
Dimensão do corpo-de-prova	3	0,000	3	0,000	3	0,000
Velocidade de ensaio	2	0,527	2	0,446	2	0,712
Interação (Dimensão e Velocidade)	6	0,062	6	0,681	6	0,652
Erro	241		159		182	
Total	253		171		194	

4.4.1 - Resumo da análise estatística dos resultados de ensaios de caracterização mecânica

As Tabelas 4.33 a 4.35 mostram os resumos, com nível de segurança a 95%, da influência da dimensão do corpo-de-prova e da velocidade de ensaio na resistência, para as três espécies caracterizadas.

O comportamento diferenciado na compressão paralela às fibras, em relação às outras duas propriedades de resistência exige um estudo mais detalhado e específico, considerando aspectos tais como a diferença da massa específica, estrutura anatômica das espécies, grã, coeficiente de Poisson, variação da velocidade de ensaio com as dimensões dos corpos-deprova e aumento da deformação específica 0,003 cm/cm, em consequência do aumento da velocidade de ensaio . É importante salientar que foram realizados ensaios adicionais e a tendência da influência da velocidade na resistência mecânica permaneceu. Nas conclusões são apresentados sugestões de pesquisas relacionadas com as possíveis causas deste comportamento.

Tabela 4.33 - Flexão estática - Resumo da análise estatística a 5% de exclusão da resistência com a dimensão do corpo-de-prova e velocidade de ensaio.

	Cumaru		Jequiti	Jequitibá		Quaruba	
	Módulo	Tensão	Módulo	Tensão	Módulo	Tensão	
	de	de	de	de	de	de	
	elasticidade	ruptura	elasticidade	ruptura	elasticidade	ruptura	
DIMENSÃO	SS	SS	SS	SS	SS	SS	
VELOCIDADE	NS	NS	NS	NS	NS	NS	
INTERAÇÃO	NS	NS	SS	SS	NS	NS	

Tabela 4.34 - Compressão paralela às fibras - Resumo da análise estatística a 5% de exclusão da resistência com a dimensão do corpo-de-prova e velocidade de ensaio.

	Cumaru	Jequitibá	Quaruba
	Tensão de ruptura	Tensão de ruptura	Tensão de ruptura
DIMENSÃO	SS	SS	SS
VELOCIDADE	SS	SS	NS
INTERAÇÃO	NS	NS	NS

Tabela 4.35 - Cisalhamento paralelo às fibras - Resumo da análise estatística a 5% de exclusão da resistência com a dimensão do corpo-de-prova e velocidade de ensaio.

	Cumaru	Jequitibá	Quaruba
	Tensão de ruptura	Tensão de ruptura	Tensão de ruptura
DIMENSÃO	SS	SS	SS
VELOCIDADE	NS	NS	NS
INTERAÇÃO	NS	NS	NS

A comparação das médias das diferentes dimensões com a resistência utilizando o teste de Tukey agrupou as dimensões da seção transversal com mesma resistência, conforma mostra a Tabela 4.36. Estes resultados mostram que não houve nenhuma tendência uniforme de comportamento da resistência com a variação de dimensões dos corpos-deprova. A análise estatística, em relação às velocidades de ensaios na compressão paralela, mostra que para o jequitibá, não se agrupa nenhuma das três velocidades e para o cumaru o agrupamento ocorre da menor velocidade para a intermediária.

Como a variação da velocidade de ensaio na compressão paralela às fibras foi significativa a um nível de 5% para o cumaru e jequitibá, foi feita a análise estatística, para verificar a possibilidade de agrupamento de velocidades. Para o jequitibá, não se agrupa nenhuma das três velocidades e para o cumaru o agrupamento ocorre da primeira velocidade com a segunda.

Tabela 4.36 - Agrupamento de diferentes dimensões com resistências equivalentes, a um nível de segurança de 95%, em relação a seção transversal normalizada 50x50 mm.

	Cumaru	Jequitibá	Quaruba
Tensão de ruptura na flexão	-	40x40=30x30=20x20	-
Módulo de elasticidade na flexão	10x10	-	30x30
Compressão paralela às fibras	40x40=10x10	40x40=30x30=20x20	40x40
Cisalhamento paralelo às fibras	40x40=30x30	40x40=20x20	40x40=30x30

4.4.2 – Visualização da tendência da resistência mecânica para as três espécies agrupadas

As Figuras 4.19 a 4.22 permitem visualizar a tendência da resistência com a diminuição das dimensões dos corpos-de-prova, para o valor médio das três espécies agrupadas. A resistência apresenta tendência de aumentar, com a redução das dimensões dos corpos-de-

prova. A exceção ficou para a resistência a compressão paralela às fibras, onde a resistência diminuiu com a diminuição das dimensões dos corpos-de-prova.

Como a velocidade de ensaio e dimensão do corpo-de-prova influenciaram na resistência a compressão paralela às fibras, os gráficos para esta propriedade, foram feitos por velocidade. É importante ressaltar que este comportamento foi comum para cada uma das três espécies. Conforme explicitado anteriormente, tal comportamento para o módulo de elasticidade, não deve ser considerado totalmente confiável, devido a condições de ensaios que exigem a confecção de um equipamento de alta sensibilidade para cada dimensão de corpo-de-prova. Seria necessário, inicialmente, verificar a precisão e calibrar cada um dos equipamentos utilizados. Portanto, os dados obtidos e apresentados servem, basicamente, de orientação para a elaboração de metodologia de ensaios para verificar a influência da variação de dimensões e de velocidades na resistência da madeira.

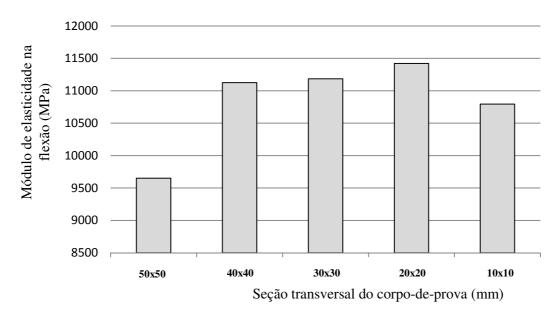


Figura 4.19 - Flexão estática - Variação do valor médio do módulo de elasticidade, resultante do agrupamento das três espécies e das três velocidades.

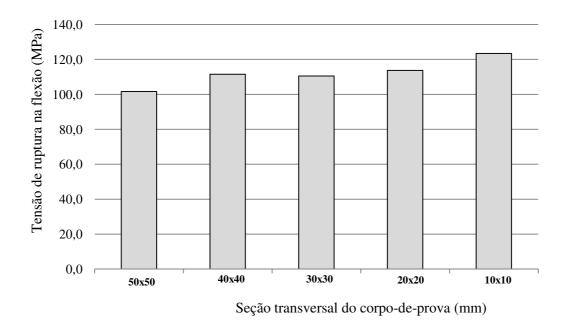


Figura 4.20 - Flexão estática – Variação do valor médio da tensão de ruptura, resultante do agrupamento das três espécies e das três velocidades.

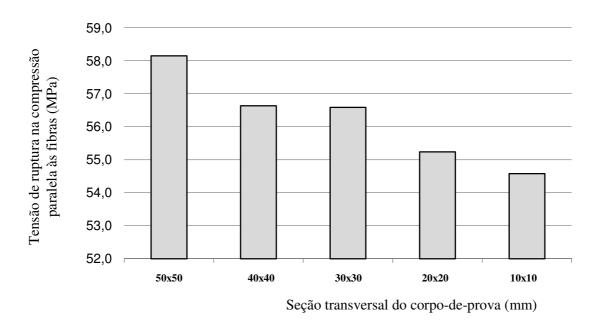


Figura 4.21 - Compressão paralela às fibras - Variação do valor médio da tensão de ruptura, resultante do agrupamento das três espécies.

Figura 4.22 - Cisalhamento paralelo às fibras - Variação do valor médio da tensão de ruptura, resultante do agrupamento das três espécies e das três velocidades.

4.4.3 - Visualização da tendência do coeficiente de variação da resistência mecânica para as três espécies agrupadas

As Figuras 4.23 a 4.26 permitem visualizar a tendência da variabilidade dos resultados de resistência obtidos nos ensaios com a diminuição das dimensões dos corpos-de-prova, para o valor médio das três espécies agrupadas. A assertiva de que a probabilidade de ocorrer regiões de baixa resistência em peças de grande volume é maior do que em peças de menores volumes, pode ser reforçada com o aumento da variabilidade dos resultados de ensaios em função da diminuição das dimensões. Uma explicação para esse comportamento é que o efeito de defeitos é potencializado a medida que as dimensões dos corpos-de-prova foram reduzidos. Com isto, o número de corpos-de-prova para ensaios de caracterização, tende a aumentar. O coeficiente de variação foi significativo a um nível de 5% de exclusão, entre as cinco dimensões de corpos-de-prova.

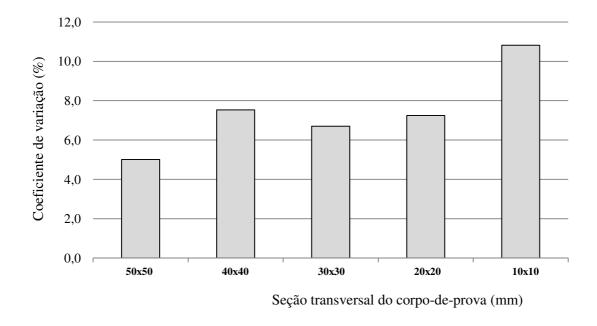


Figura 4.23 - Flexão estática - Variação do valor médio do coeficiente de variação do módulo de elasticidade, resultante do agrupamento das três espécies e das três velocidades.

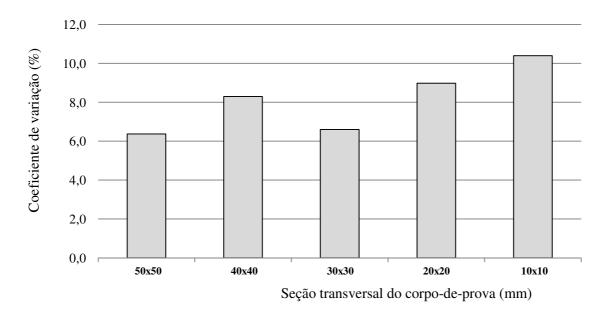


Figura 4.24 - Flexão estática - Variação do valor médio do coeficiente de variação da tensão de ruptura, resultante do agrupamento das três espécies e das três velocidades.

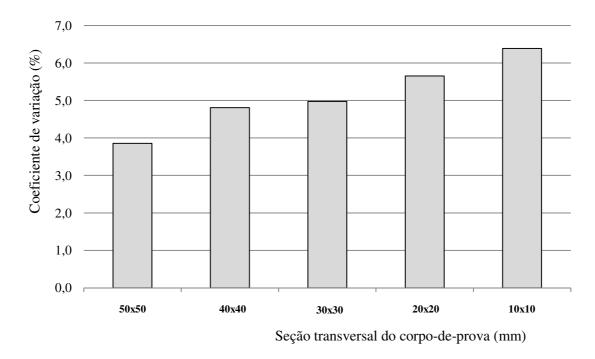


Figura 4.25 - Compressão paralela às fibras - Variação do valor médio do coeficiente de variação da tensão de ruptura, resultante do agrupamento das três espécies e das três velocidades.

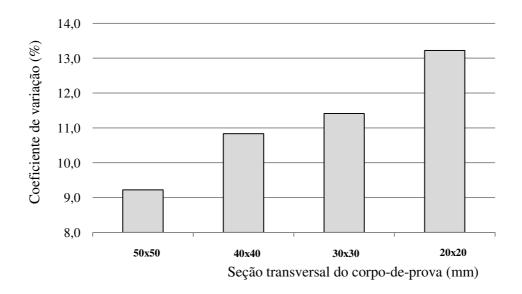


Figura 4.26 - Cisalhamento paralelo às fibras - Variação do valor médio do coeficiente de variação da tensão de ruptura, resultante do agrupamento das três espécies e das três velocidades.

5 - CONCLUSÕES E RECOMENDAÇÕES

A partir dos resultados de resistência obtidos, com a redução da seção transversal do corpo-de-prova de 50mm x 50mm para 10mm x 10mm cm e aumento da velocidade de ensaio em três vezes, em relação a velocidade das normas COPANT 555/73, 463/73 e 464/72, para o cumaru (*Dipterix odorata*), jequitibá (*Allantoma lineata*) e quaruba (*Vochyisia guianensis*), pode-se concluir que:

- Houve diferença significativa a um nível de 5% de exclusão na resistência mecânica para as diferentes dimensões dos corpos-de-prova, na flexão estática, compressão paralela às fibras e cisalhamento paralelo às fibras, para as três espécies caracterizadas.
- Houve diferença significativa a um nível de 5% de exclusão na resistência mecânica para as diferentes velocidades de ensaios na compressão paralela às fibras, para o cumaru e jequitibá.
- Não houve diferença significativa a um nível de 5% de exclusão na resistência mecânica para as diferentes velocidades de ensaios na flexão e cisalhamento paralelo às fibras, para as três espécies caracterizadas.
- Não houve diferença significativa a um nível de 5% de exclusão na resistência mecânica para as diferentes velocidades de ensaios na compressão paralela às fibras, para a quaruba.
- Na flexão e cisalhamento paralelo às fibras, a resistência mecânica apresentou tendência de aumento, com a diminuição da dimensão do corpo-de-prova, para as três espécies caracterizadas.
- Na compressão paralela às fibras a resistência mecânica apresentou tendência de diminuição, com a diminuição da dimensão do corpo-de-prova, para as três espécies caracterizadas.
- Os coeficientes de variação dos resultados de resistência apresentaram aumentos significativos a um nível de 5% de exclusão, na flexão estática, compressão paralela às fibras e cisalhamento paralelo às fibras, para as três espécies caracterizadas, com a diminuição das dimensões dos corpos-de-prova
- Corpo-de-prova com dimensão muito reduzida (seção transversal de 10mmx10mm) é difícil de confeccionar com precisão e esquadro, principalmente para ensaio na compressão paralela e cisalhamento paralelo às fibras. Também fica mais difícil

visualizar a orientação dos anéis de crescimento e identificação numérica do corpo-deprova.

A redução das dimensões dos corpos-de-prova para 20mmx20mm e aumento da velocidade de ensaios pode trazer mudanças significativas no processo de caracterização, tais como:

- A capacidade de carga da máquina de ensaio pode ser significativamente reduzida. Corpo-de-prova de 50x50 mm de seção transversal pode suportar até 25 000 kgf de carga na compressão paralela às fibras. Numa seção transversal de 20mmx20mm, esta carga cai para 4 000 kgf.
- Redução substancial no tempo de secagem e tempo de climatização dos corpos-de-prova.
- O tempo de duração do ensaio foi reduzida em 7 vezes na flexão, 3 vezes na compressão paralela às fibras e 5 vezes no cisalhamento paralelo às fibras, tomando como referência a dimensão inicial de 50x50 mm de seção transversal e a dimensão final de 20x20 mm.
- A massa do corpo-de-prova, a 12% de teor de umidade, foi reduzido de 16 vezes para a flexão, 16 vezes para a compressão paralela às fibras e 12 vezes para o cisalhamento paralelo às fibras.

A contribuição da negação da hipótese do presente estudo, está na identificação de várias incógnitas sobre o comportamento da madeira na caracterização, até então desconhecidas. Como conseqüências podem ser gerados inúmeros trabalhos de pesquisa, com objetivos específicos, voltados para o conhecimento da inter-relação entre parâmetros tais com velocidade de ensaio, dimensões do corpo-de-prova, orientação de fibras, elementos estruturais anatômicos e massa específica. Mais especificamente, pode-se indagar: A influência da variação da dimensão na resistência se deve ao tipo de grã, a orientação de fibras, aos elementos estruturais anatômicos, a massa específica ou a ação conjunta de todas estas variáveis?

REFERÊNCIAS BIBLIOGRÁFICAS

- AMERICAN INSTITUTE OF TIMBER CONSTRUCTION AITC. Volume Factor for Structural Glue Laminated Timber. AITC Technical Note 21. USA. 2005. 4p.
- AMERICAN STANDARD OF TESTING MATERIALS. ASTM D-143:1972. Standard Methods Testing: Small Clear Specimens of Timber. USA. 1972. 57p.
- AMERICAN STANDARD OF TESTING MATERIALS. ASTM D-198:1973. Standard Test Methods of Static Tests of Lumber in Structural Sizes. USA. 1984. 52p.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Disponível em: http://www.abnt.org.br Acesso em: 15 de abril de 2010.
- BODIG, J. & JAYNE, B. A. **Mechanics of Wood and Wood Composites**. New York: Ed. Van Nostrand Reinhold Company.. 1982. 711p.
- BRITISH STANDARDS INSTITUTION, BS 5820/79 Methods of Test for Determination of Certain Physical and Mechanical Properties of Timber in Structural Size. UK, London, 1979. 20p.
- COMISIÓN PANAMERICANA DE NORMAS TÉCNICAS. COPANT 461: 1972. Método de Determinación del Peso Específico Aparente. Buenos Aires. 1972. 7p.
- COMISIÓN PANAMERICANA DE NORMAS TÉCNICAS. COPANT 462: 1972. Método de Determinación del la Contracción. Buenos Aires. 1972. 6p.
- COMISIÓN PANAMERICANA DE NORMAS TÉCNICAS. COPANT 463: 1973. Método de Determinación del Cizallamiento Paralelo al Grano. Buenos Aires. 1973. 7p.
- COMISIÓN PANAMERICANA DE NORMAS TÉCNICAS. COPANT 464: 1972. Método de Determinación del la Compresión Axil o Paralelo al Grano. Buenos Aires. 1972. 6p.
- COMISIÓN PANAMERICANA DE NORMAS TÉCNICAS. COPANT 555: 1973. Método de Ensayo de Flexión Estática. Buenos Aires. 1973. 10p.
- COMISIÓN PANAMERICANA DE NORMAS TÉCNICAS. COPANT 459: 1972. Acondicionamiento de las Maderas destinadas a los ensayos físicos y mecânicos . Buenos Aires. 1972. 5p.
- DIAS, A. A.; LAHR, F. A. R. Proposta de Método para o Ensaio de Compressão Normal às Fibras da Madeira. Anais do V EBRAMEM, V.2. Belo Horizonte, MG. 1995. 10p.
- GEHARDS, C. C. & LINK, C. L. Effect of Grade on Load duration of Douglas-Fir Lumber in Bending. Wood and Fiber Science. Vol. 20. No 1. Madison, Wis. 1988. P. 146-161

- GEHARDS, C. C. & LINK, C. L. Effect of Loading Rate on Bending Strength of Douglasfir 2 by 4's. Forest Products Journal. Vol. 36. N° 2. Madison, Wis. 1986. 4p.
- GEHARDS, C. C. ET. ALL. Effect of Loading Rate on Tensile Strength of Douglas-fir 2 by 6's. Forest Products Journal. Vol. 34. No 4. Madison, Wis. 1984. 4p.
- GERHARDS, C. C. Effect of Duration and Rate of Loading on Strength of Wood and Wood-based materials. Forest Product Laboratory, Forest Service. U. S. Department of Agriculture. FPL 283. Madison, Wis. 1977. 24p.
- HOHEISEL, H. Estipulaciones para los Ensayos de Propiedades Físicas y Mecânicas de la Madeira. Instituto Forestal Latinoamericano de Investigacion y Capacitacion. Mérida, Venezuela. 1968. 61p.
- JARA, E. P. Determinação do ponto de saturação das fibras de madeiras utilizadas no Brasil. Boletim ABPM 58. São Paulo. 1987. 6p.
- KRETSCHMANN, D. E. Feasibility Study of a Modified ASTM D 143 Block Shear Specimen for Thin Material. Forest Products Journal. Vol. 41. N° 3. 1991. 4p.
- LARSEN, H. J. Properties Affecting Reliability Design of Timber Strucsture. COST E24 Seminar on Reliability of Timber Structures. Coimbra, Portugal. May 2001. 26p.
- LOGSDON, N. B. & Junior, C. C. Influência da Umidade nas Propriedades de Resistência e Rigidez da madeira. Caderno de engenharia de Estruturas, São Carlos, n. 18, p. 77-107 2002. 30p.
- MADSEN, B. **Structural Behaviour of Timber**. Canada: Ed. Timber Engineering Ltda. 1992. 437p.
- MELO, J. E. & CORADIN, V. H. Classes de Massa Específica Básica para Madeiras da Amazônia Brasileira. Anais do 6° Congresso Florestal Brasileiro. Campos do Jordão. SP. 1990. 6p.
- OKKONEN, A. E. Factors Affecting the Strength of Block-Shear Specimens. Forest Products Research Society. Forest Products Journal. Vol. 39. No 1. 1988. 7p.
- PADT-REFORT. **Manual de Diseño para Maderas del Grupo Andino**. Peru: Junta Del Acuerdo de Cartagena. 1982. 470p.
- SILVEIRA, V.; Trugilho, P. F.; Rosado, S.C.S. Influência do Tamanho do Corpo-de-prova na Variação Dimensional da Madeira de *Eucalyptus* sp. Anais do VI EBRAMEM, V.1. Florianópolis, SC. 1998. 6p.
- STATISTICAL PACKAGE FOR THE SOCIAL SCIENCES. SPSS for Windows. 1992
- THELANDERSSON, S. & LARSEN, H. J. Timber Engineering, Ed. Wiley & Sons. Inglaterra. 2003. 20p.

- U. S. DEPARTMENT OF AGRICULTURE FOREST PRODUCTS LABORATORY **Wood Handbook: Wood as an Engineering Material.. Madison**, Wis. 2002. 463p.
- WOOD, L. W. Relation of Strength of Wood to Duration of Load. Forest Products Laboratory. Forest Service. Department of Agriculture. USA. 1951. 10p.
- WANGAARD, F. F. WOOD: **Its Structure and Properties**. U. S. Department of Agriculture, Forest Products Laboratory. Pennsylvania State University, 1981. 465p.

APÊNDICES

A - TENSÃO DE RUPTURA NA FLEXÃO ESTÁTICA - RESULTADOS DOS ENSAIOS.

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	MOR	aparente	de ensaio	MOR	aparente	de ensaio	MOR	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1	я	134,8	1,12	12,6	90,2	0,64	13,7	70,2	0,64	14,3
2	min) mr	131,5	1,18	12,7	86,0	0,67	13,8	73,7	0,63	14,6
3	mm/min 50x50 mm	154,9	1,11	12,8	89,8	0,69	14,2	75,3	0,60	15,0
4	Λ' Ⅱ	151,4	1,21	12,7	94,1	0,67	13,8	69,7	0,58	14,5
5	: =2 ova :	117,6	1,23	12,7	89,4	0,67	13,9	76,0	0,63	14,1
6	Velocidade orpo-de-pro	143,4	1,18	12,6	90,3	0,69	13,8	70,7	0,58	15,0
7	locic o-de	142,3	1,18	12,7	95,1	0,68	13,7	63,5	0,60	14,7
8	Velocidade =2 Corpo-de-prova	141,0	1,19	12,7	89,6	0,68	13,9			
9	O				95,4	0,66	14,0			
Val	or médio	139,6	1,17	12,7	91,1	0,67	13,9	71,3	0,61	14,6
Coef. de	variação (%)	8,4	3,32	0,6	3,4	2,19	1,2	6,0	4,02	2,4
1		148,5	1,12	12,7	95,5	0,65	14,0	69,7	0,63	13,8
2	шш	147,4	1,13	12,6	91,8	0,61	14,1	73,8	0,60	14,4
3	mm/min 50x50 mm	149,4	1,15	12,6	91,4	0,69	14,1	68,0	0,59	14,5
4	mn 50x	142,3	1,19	12,5	95,3	0,61	14,2	70,0	0,64	15,0
5	=5,0 va = p	151,6	1,14	12,7	95,1	0,69	14,3	70,3	0,56	14,1
6		142,0	1,21	12,8	92,1	0,62	13,5	64,0	0,57	14,6
7	cida de-1	147,1	1,19	12,7	94,4	0,67	14,4	70,7	0,58	14,3
8	Velocidade orpo-de-pro	118,3	1,19	12,6	92,9	0,67	14,1			
99	7 0	149,5	1,17	12,6	92,1	0,64	14,2			
10					95,6	0,69	13,8			
Val	or médio	144,0	1,17	12,6	93,6	0,65	14,1	69,5	0,60	14,4

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	MOR (MPa)	aparente (g/cm3)	de ensaio (%)	MOR (MPa)	aparente (g/cm3)	de ensaio	MOR (MPa)	aparente (g/cm3)	de ensaio (%)
1		151,0	1,16	12,8	89.5	0,64	13,6	75,0	0,65	14,8
2	_ =	151,0	1,17	12,6	88,1	0,69	13,9	69,9	0,63	14,8
3	min Om	130,4	1,17	12,8	88,9	0,68	13,9	75,0	0,50	14,2
J	mm/min 50x50 mm	160,4	1,20	12,7	96,4	0,65	13,9	78,5	0,66	14,7
4	λ, II	159,4		12,7	93,0	0,65		78,3	0,60	14,3
<u> </u>	Velocidade =7 Corpo-de-prova	159,4	1,14		93,0	0,63	13,9	73,2		
6	Velocidade orpo-de-pro		1,11	12,8			14,0		0,63	14,9
	ocid	117,9	1,15	12,9	95,7	0,66	14,1	63,0	0,55	14,4
8	Vel	106,5	1,18	12,7	95,2	0,63	13,7	73,4	0,62	15,2
9	Ú	107,4	1,23	12,8	94,6	0,67	13,9			
10	/ 11	135,1	1,20	12,7	95,7	0,67	13,9	= 2.2	0.60	11.6
	or médio	138,1	1,17	12,8	93,5	0,66	13,9	73,3	0,62	14,6
Coef. de	variação (%)	15,3	3,14	0,7	3,7	2,94	0,9	6,8	6,40	2,3
1		168,0	1,17	10,7	93,5	0,65	12,9	93,2	0,63	12,6
2	u	171,7	1,18	10,2	85,6	0,65	13,6	91,4	0,62	12,8
3	mm/min 40x40 mm	158,3	1,12	11,3	91,7	0,67	12,5	88,1	0,62	13,9
4	mm/min 40x40 m	184,6	1,21	10,5	92,0	0,65	12,2	75,6	0,60	13,7
5	40)	168,5	1,19	10,6	91,1	0,60	12,8	83,4	0,66	13,3
6	=2,5 va =	178,2	1,18	10,5	89,2	0,62	12,7	91,1	0,61	13,4
7	de =	183,3	1,18	10,4	93,1	0,64	12,8	81,3	0,61	10,5
8	zida de-I	153,8	1,10	11,9	92,9	0,63	12,5	87,6	0,63	13,8
9	Velocidade =2 Corpo-de-prova	174,1	1,04	11,3	90,9	0,60	12,7	79,7	0,64	12,8
10	Cor	149,2	1,07	11,6	85,2	0,59	13,9	56,5	0,58	12,7
11	-	164,6	1,13	11,2	88,3	0,69	13,1	82,9	0,61	13,4
12		175,1	1,19	10,5				84,1	0,61	14,0
Val	or médio	162,0	1,15	10,9	90,3	0,64	12,9	82,9	0,62	13,1
Coef. de	variação (%)	6,6	4,65	5,1	3,2	4,96	3,8	11,8	3,30	7,1

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	MOR	aparente	de ensaio	MOR	aparente	de ensaio	MOR	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
11		158,5	1,11	11,7	93,1	0,67	12,9	79,7	0,58	13,4
2		154,1	1,13	11,4	94,4	0,59	11,9	83,3	0,59	13,4
3	а	146,7	1,18	11,4	90,4	0,62	12,9	57,0	0,60	13,7
4	mm/min 40x40 mm	150,1	1,14	11,5	87,8	0,72	12,6	88,6	0,61	12,3
5	mm/min 40x40 m	127,7	1,14	11,2	89,3	0,64	12,3	87,9	0,63	12,4
6	0,0 m = 4(156,2	1,10	10,3	88,8	0,65	12,5	83,3	0,59	13,1
7		168,2	1,18	10,5	97,4	0,64	12,2	89,1	0,62	13,9
8	Velocidade =5 Corpo-de-prova	116,1	1,13	11,8	91,7	0,57	12,4	59,9	0,62	13,3
9	ocic o-de	158,6	1,09	11,0	96,1	0,61	11,9	73,2	0,58	13,6
10	Vel	158,0	1,19	10,5	97,2	0,68	12,3	86,2	0,63	13,0
11	O	154,3	1,20	10,5				76,2	0,56	13,0
12		166,1	1,18	10,5				90,1	0,65	13,1
13		180,7	1,09	11,2						
Valo	or médio	153,5	1,14	11,0	92,6	0,64	12,4	79,5	0,60	13,2
Coef. de	variação (%)	10,8	3,42	4,6	3,8	6,91	2,7	14,0	4,16	3,6

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	MOR	aparente	de ensaio	MOR	aparente	de ensaio	MOR	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
11		168,7	1,10	11,8	94,7	0,61	12,4	80,1	0,61	13,8
2		176,1	1,08	11,7	82,5	0,61	13,7	75,4	0,59	13,1
3	Д	162,2	1,13	11,9	92,0	0,61	13,1	89,9	0,62	13,5
4	mm/min 40x40 mm	177,1	1,18	10,7	85,4	0,67	12,9	90,9	0,60	13,8
5	mm/min 40x40 m	179,1	1,07	11,3	96,0	0,68	12,3	88,3	0,59	13,5
6	,5 m = 40	157,5	1,16	11,1	96,5	0,66	12,8	80,4	0,59	12,7
7		122,4	1,07	11,4	92,8	0,68	12,8	85,7	0,60	13,0
8	Velocidade =7 Corpo-de-prova	167,3	1,06	11,6	103,8	0,69	12,3	89,3	0,61	13,6
9	ocic o-de	153,7	1,12	11,7	94,0	0,69	12,4	73,4	0,60	14,1
10	Vel 'orp	163,8	1,07	11,9	84,5	0,65	12,8	86,0	0,67	13,0
11	O	137,1	1,14	11,2				83,5	0,57	13,6
12		149,5	1,13	11,9				85,4	0,57	14,3
13		144,4	1,14	11,5						
Vale	or médio	158,4	1,11	11,5	92,2	0,66	12,7	84,0	0,60	13,5
Coef. de	variação (%)	10,6	3,62	3,1	7,0	4,88	3,5	6,7	4,36	3,5

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	MOR	aparente	de ensaio	MOR	aparente	de ensaio	MOR	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		177,8	1,18	11,7	96,3	0,67	13,6	76,4	0,59	14,0
2		157,2	1,20	11,9	97,7	0,54	14,2	72,8	0,64	13,8
3		179,7	1,15	11,9	94,0	0,65	13,0	84,0	0,63	13,9
4	д	140,5	1,14	12,2	88,9	0,65	12,6	68,5	0,62	13,9
5	nin mr	156,4	1,21	11,8	96,2	0,66	13,8	85,2	0,63	13,5
6	mm/min 30x30 mm	158,5	1,18	11,6	92,7	0,66	13,6	81,3	0,63	13,9
7	3(n = 3)	159,4	1,19	11,5	95,9	0,67	13,7	72,6	0,60	14,1
8	: =2 ova	154,8	1,15	12,0	91,3	0,66	13,9	83,3	0,66	13,9
99	Velocidade =2 Corpo-de-prova	137,9	1,17	11,8	87,6	0,67	13,5	81,1	0,63	14,1
10	locid o-de	160,6	1,22	11,3	96,8	0,65	13,4			
11	Ve	167,1	1,18	12,2	90,5	0,65	13,5			
12	O	146,8	1,20	12,0	91,9	0,69	13,8			
13					96,3	0,70	13,8			
14					96,1	0,67	13,6			
15					93,8	0,66	13,9			
Valo	or médio	158,1	1,18	11,8	93,7	0,66	13,6	78,4	0,63	13,9
Coef. de	variação (%)	8,1	2,19	2,2	3,3	5,33	2,8	7,6	3,24	1,4

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	MOR	aparente	de ensaio	MOR	aparente	de ensaio	MOR	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		139,7	1,16	12,3	92,5	0,66	13,8	85,9	0,62	14,1
2		155,6	1,15	11,7	92,4	0,71	14,0	78,7	0,63	14,2
3		169,3	1,23	11,4	103,5	0,69	14,1	75,9	0,63	14,1
4	E	172,6	1,20	11,8	92,6	0,66	14,2	74,7	0,56	14,0
5	mm/min 30x30 mm	165,3	1,17	11,5	94,9	0,68	14,1	80,7	0,64	14,2
6	1m/1 0x3(131,0	1,19	11,4	83,7	0,64	13,8	82,0	0,65	14,2
7	Oʻ II	172,5	1,25	10,5	99,2	0,70	14,0	84,0	0,63	13,9
8	Velocidade =5. Corpo-de-prova :	164,7	1,19	11,4	91,8	0,63	13,5	76,6	0,65	14,1
9	Velocidade orpo-de-pro	177,5	1,15	12,2	91,9	0,62	13,6	77,4	0,60	14,1
10	loci 10-d	171,5	1,20	11,9	97,1	0,65	14,0	77,8	0,64	14,2
11	Ve	159,1	1,18	11,6	93,2	0,65	13,9			
12	O	154,5	1,19	12,2	97,3	0,69	13,9			
13					92,4	0,65	13,2			
14					88,9	0,64	13,6			
15					92,8	0,66	12,8			
16					95,1	0,66	13,6			
Val	or médio	161,1	1,19	11,7	93,7	0,66	13,8	79,4	0,62	14,1
Coef. de	variação (%)	8,7	2,40	4,2	4,7	3,90	2,6	4,6	4,61	0,8

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	MOR	aparente	de ensaio	MOR	aparente	de ensaio	MOR	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		156,1	1,15	12,2	93,1	0,69	13,8	70,0	0,56	14,0
2		159,0	1,20	11,8	85,5	0,67	13,0	73,1	0,59	14,0
3		177,9	1,17	12,1	84,7	0,66	13,4	69,7	0,63	13,9
4	я	158,4	1,19	12,0	94,4	0,65	13,2	84,1	0,63	13,8
5	nin mr	163,0	1,23	11,6	88,5	0,63	13,5	80,7	0,61	14,1
6	mm/min 30x30 mm	165,5	1,14	12,3	92,7	0,63	13,8	80,1	0,56	13,9
7	3(n = 3)	177,5	1,16	12,0	93,9	0,68	13,5	81,3	0,60	13,9
8	s =7 ova	135,9	1,15	12,3	95,6	0,67	12,9	72,7	0,60	14,0
9	Velocidade =7 Corpo-de-prova	159,3	1,21	11,5	89,5	0,68	13,9	87,1	0,62	14,1
10	locid o-de	130,8	1,18	11,6	92,0	0,63	13,7	79,1	0,57	13,4
11	Ve	157,3	1,20	12,1	92,0	0,63	13,7			
12	O	184,0	1,18	12,1	97,6	0,65	13,6			
13					102,0	0,67	13,2			
14					92,9	0,63	13,6			
15					89,7	0,61	13,3			
Valo	or médio	160,4	1,18	12,0	92,3	0,65	13,5	77,8	0,60	13,9
Coef. de	variação (%)	9,8	2,29	2,3	4,8	3,75	2,2	7,8	4,27	1,5

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	MOR	aparente	de ensaio	MOR	aparente	de ensaio	MOR	aparente	de ensaio
	-	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		172,7	1,16	11,1	98,8	0,66	13,0	100,4	0,71	13,7
2		174,4	1,14	11,9	91,6	0,66	13,6	91,8	0,63	13,8
3		175,9	1,14	12,1	90,4	0,67	13,1	84,1	0,62	12,9
4		176,6	1,13	12,0	94,5	0,66	12,9	80,9	0,58	13,1
5		176,9	1,19	11,8	92,2	0,66	12,8	84,0	0,65	13,8
6		112,6	1,08	12,3	96,8	0,69	13,5	85,7	0,59	12,7
7		178,4	1,19	12,9	98,3	0,67	13,1	73,9	0,60	13,3
8		182,8	1,19	11,3	89,3	0,66	13,2	76,5	0,55	13,7
9	я	145,6	1,16	11,9	90,9	0,66	13,1	70,1	0,65	13,8
10	mm/min 20x20 mm	169,5	1,15	11,8	93,7	0,68	13,5	86,6	0,58	13,0
11	m/r x20	139,2	1,18	11,7	95,6	0,67	13,2			
12	5 m = 200	188,9	1,18	12,1	94,2	0,68	13,5			
13	- (11	151,8	1,15	12,1	87,0	0,66	13,1			
14	Velocidade = 2 Corpo-de-prova				89,8	0,66	13,2			
15	Velocidade orpo-de-pro				92,9	0,65	12,8			
16	oci o-d				94,5	0,67	13,7			
17	Vel				93,5	0,66	13,2			
18	O				93,9	0,67	13,3			
19					91,0	0,68	13,5			
20					100,1	0,67	13,3			
21					92,0	0,67	13,2			
22					96,0	0,67	13,4			
23					99,2	0,68	13,0			
24					99,9	0,70	13,6			
25					99,4	0,67	13,1			
26					89,2	0,67	13,8			
Val	or médio	165,0	1,16	11,9	94,0	0,67	13,3	83,4	0,62	13,4
Coef. de	variação (%)	13,1	2,74	3,7	3,9	1,59	2,0	10,5	7,30	3,1

	Velocidade		CUMARU			JEQUITIBÁ	-		QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	MOR	aparente	de ensaio	MOR	aparente	de ensaio	MOR	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		164,7	1,16	12,6	94,2	0,66	13,6	87,1	0,64	13,5
2		154,2	1,08	12,9	90,4	0,68	13,2	88,7	0,63	13,9
3		135,8	1,14	12,6	88,8	0,67	13,2	70,8	0,65	13,6
4		131,0	1,14	12,8	91,7	0,65	13,2	81,8	0,65	13,8
5		144,7	1,14	12,6	90,4	0,64	13,6	80,9	0,62	13,7
6		196,7	1,12	12,7	93,7	0,61	13,1	87,2	0,66	13,5
7		148,1	1,11	12,9	98,1	0,61	13,0	77,4	0,55	13,8
8		193,9	1,22	11,6	101,5	0,68	12,6	92,8	0,62	13,8
9	_ E	180,8	1,14	12,7	90,0	0,62	13,4	91,0	0,67	13,6
10	5,0 mm/min 1= 20x20 mi	158,8	1,16	12,9	106,0	0,63	13,2	74,2	0,56	13,5
11	nm/)x2(171,9	1,16	12,6	88,9	0,61	13,1			
12	0 m = 20	157,1	1,14	12,7	93,2	0,61	13,2			
13	= 5, va =	172,3	1,20	12,5	93,5	0,62	13,2			
14		166,3	1,14	13,9	93,9	0,62	13,3			
15	Velocidade orpo-de-prc	142,0	1,11	12,9	98,1	0,64	13,4			
16	loc po-e	127,1	1,06	12,9	96,7	0,62	13,1			
17	Ve				94,0	0,62	13,2			
18	J				99,2	0,68	12,5			
19					104,0	0,63	12,4			
20					96,6	0,69	12,7			
21					97,9	0,61	12,5			
22					97,8	0,69	12,6			
23		***************************************			89,8	0,61	12,8			
24					83,9	0,69	13,3			
25					102,4	0,68	12,8			
	or médio	159,1	1,14	12,8	95,0	0,64	13,1	83,2	0,63	13,7
		,	•	•	•	,	ŕ	•	,	•
Coef. de	variação (%)	13,1	3,53	3,5	5,6	4,78	2,7	8,9	6,50	1,1

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo- de-prova	de ensaio/ Corpo- de-prova	Tensão de ruptura- MOR	Massa específica aparente	Teor de umidade de ensaio	Tensão de ruptura- MOR	Massa específica aparente	Teor de umidade de ensaio	Tensão de ruptura- MOR	Massa específica aparente	Teor de umidade de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		154,5	1,17	12,8	85,6	0,68	12,8	89,2	0,62	13,7
2		182,4	1,24	12,1	101,2	0,69	12,7	76,7	0,64	13,7
3		187,2	1,15	12,6	99,2	0,67	13,1	88,0	0,61	13,6
4		150,8	1,16	12,6	96,2	0,68	13,2	80,9	0,60	13,5
5		153,2	1,20	12,6	93,4	0,71	13,3	92,4	0,67	13,6
6		161,6	1,21	12,4	96,7	0,67	12,8	87,2	0,61	13,6
7		159,1	1,13	12,2	91,5	0,62	12,7	88,3	0,55	13,0
8	_	182,4	1,15	12,5	100,2	0,62	12,7	75,5	0,62	13,6
9	nir mm	153,5	1,06	12,9	95,8	0,67	13,2	93,8	0,64	13,7
10	mm/min 20x20 mm	187,0	1,10	13,0	101,1	0,64	12,4	73,9	0,61	13,6
11		165,7	1,12	13,1	91,8	0,64	13,4	77,0	0,63	13,5
12	Velocidade = 7,5 Corpo-de-prova =	157,7	1,17	12,7	98,7	0,65	13,5		***************************************	
13	de =	190,4	1,21	12,0	95,7	0,63	13,2		***************************************	
14	Velocidade orpo-de-prc	160,2	1,16	11,8	90,4	0,66	13,6			
15	ole -od.	112,5	1,09	13,1	95,5	0,64	13,2			
16	Cor				102,8	0,67	13,4			
17					94,8	0,64	13,5			
18					99,8	0,67	12,9			
19					98,4	0,67	13,4			
20					93,6	0,64	13,3			
21					100,5	0,68	13,4		***************************************	
22					89,0	0,67	13,3		***************************************	
23					87,0	0,63	13,1		***************************************	
24					97,3	0,68	13,0			
Val	or médio	163,9	1,15	12,6	95,7	0,66	13,1	83,9	0,62	13,5
Coef. de	variação (%)	12,3	4,27	3,2	4,8	3,45	2,4	8,6	4,69	1,5

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	MOR	aparente	de ensaio	MOR	aparente	de ensaio	MOR	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		136,9	1,24	12,6	108,5	0,64	12,2	110,3	0,71	14,0
2		217,3	1,22	12,8	112,0	0,68	12,5	107,6	0,63	15,3
3		147,0	1,15	12,7	110,8	0,67	11,8	81,5	0,60	14,7
4		210,9	1,21	12,7	116,9	0,66	11,3	93,1	0,68	14,9
5		118,3	1,18	12,7	114,8	0,64	12,0	107,8	0,69	14,5
6		146,2	1,18	12,7	109,7	0,67	12,0	92,7	0,56	14,7
7		183,7	1,16	12,8	108,6	0,66	12,5	73,4	0,54	14,6
8	Д	157,6	1,13	12,5	112,8	0,66	12,3	97,0	0,62	14,9
9	min mr	134,4	1,13	12,9	116,9	0,67	11,7	118,7	0,71	14,8
10	mm/min 10x10 mm	166,8	1,09	12,9	111,8	0,69	11,6	81,7	0,58	15,2
11	2,5 mm/min 1= 10x10 mr	172,9	1,15	12,7	111,8	0,66	12,3	105,1	0,66	13,7
12	= 2, va =	138,5	1,15	13,0	109,7	0,66	12,4	103,8	0,64	15,4
13	Velocidade = 2 Corpo-de-prova	173,7	1,18	12,6	112,9	0,66	12,3	109,1	0,63	14,8
14	cida -de-	177,1	1,08	12,7	110,7	0,66	12,4	104,0	0,62	14,5
15	/elo rpo	115,5	1,11	12,8	111,8	0,67	11,7	110,0	0,61	14,8
16	7 00	206,5	1,20	12,8	112,8	0,67	11,7	93,0	0,59	14,7
17		180,0	1,23	12,6	109,6	0,61	11,1	90,4	0,58	15,0
18					107,5	0,64	11,7	87,1	0,57	14,6
19					115,0	0,66	11,9			
20					107,5	0,65	12,0			
21					114,2	0,76	12,2			
22					116,9	0,67	12,2			
<u>23</u> 24					107,6 109,7	0,62 0,63	12,0 11,6			
	or médio	162.7	1 16	12.7		·		00 1	0.62	147
		163,7	1,16	12,7	111,7	0,66	12,0	98,1	0,62	14,7
Coef. de	variação (%)	18,8	4,05	1,0	2,7	4,18	3,1	12,5	8,20	2,8

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo- de-prova	de ensaio/ Corpo-	Tensão de ruptura-	Massa específica	Teor de umidade	Tensão de ruptura-	Massa específica	Teor de umidade	Tensão de ruptura-	Massa específica	Teor de umidade
	de-prova	MOR	aparente	de ensaio	MOR	aparente	de ensaio	MOR	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		179,3	1,19	11,8	106,5	0,71	12,7	104,8	0,61	15,2
2		168,3	1,13	11,9	106,5	0,63	12,7	96,9	0,63	15,5
3		154,0	1,19	11,8	105,4	0,66	12,1	91,9	0,64	14,7
4		181,7	1,20	12,0	110,8	0,69	12,5	96,5	0,64	14,6
5		172,5	1,11	12,0	111,6	0,68	11,8	97,1	0,67	15,2
6		199,4	1,19	11,7	112,9	0,66	12,5	109,6	0,68	14,9
7		183,2	1,20	11,9	111,6	0,69	12,2	102,0	0,62	14,5
8	Д	142,0	1,12	12,2	110,7	0,64	11,8	91,1	0,64	15,0
9	nin mr	170,4	1,15	12,0	109,6	0,67	12,0	95,5	0,63	14,8
10	,0 mm/min = 10x10 mm	146,8	1,17	12,1	103,4	0,65	10,1	81,7	0,57	15,3
11	5,0 m 1 = 10	196,3	1,14	12,2	107,6	0,66	11,8	94,9	0,64	14,8
12		114,0	1,13	12,2	107,6	0,66	12,0	86,9	0,58	14,9
13	ade pro	154,3	1,19	12,1	110,8	0,66	12,1	91,9	0,61	14,9
14	cid¿ -de-	187,9	1,18	11,9	106,5	0,73	12,0	86,3	0,56	14,3
15	Velocidade = 5 Corpo-de-prova	149,5	1,11	12,1	109,6	0,63	12,4	103,6	0,63	14,6
16	7 3				109,7	0,67	12,3	95,7	0,61	15,9
17					105,4	0,73	12,4	88,5	0,59	15,0
18					107,6	0,67	12,3	80,7	0,62	14,3
19					112,8	0,68	12,6	94,8	0,60	15,1
20					105,4	0,67	12,4	100,6	0,64	15,3
21					109,5	0,65	12,4			
22					103,4	0,66	12,5			
23					103,3	0,68	12,2			
	or médio	166,6	1,16	12,0	108,2	0,67	12,2	94,6	0,62	14,9
	variação (%)	13,9	2,97	1,2	2,8	4,09	4,3	7,9	5,01	2,7

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	-
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	MOR	aparente	de ensaio	MOR	aparente	de ensaio	MOR	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		202,4	1,10	12,1	107,6	0,65	12,8	100,6	0,56	14,2
2		185,8	1,13	11,9	107,6	0,72	13,1	112,0	0,66	14,8
3		120,5	1,09	12,0	100,2	0,63	13,7	109,4	0,63	15,0
4		154,5	1,18	11,9	106,5	0,64	12,6	106,6	0,64	14,8
5		108,6	1,18	11,9	105,4	0,63	13,7	104,8	0,61	14,6
6		156,1	1,18	12,1	103,4	0,63	12,4	105,4	0,59	14,1
7		164,0	1,14	12,1	104,4	0,65	13,3	90,1	0,63	14,8
8		192,1	1,19	12,1	106,5	0,61	13,0	83,7	0,62	14,5
9	lin m m	175,4	1,19	12,1	104,4	0,66	13,3	118,3	0,65	14,4
10	7,5 mm/min 1= 10x10 mm	167,1	1,12	12,2	100,1	0,62	13,5	96,8	0,59	14,4
11	6 mr 10x	167,5	1,16	12,1	103,3	0,62	13,6	102,8	0,65	14,5
12	" 7,5 " a =	210,8	1,12	11,9	100,1	0,61	13,5	112,9	0,68	14,1
13	de = orova	194,2	1,19	12,3	102,2	0,64	13,2	105,3	0,68	14,9
14	idae de-I	152,4	1,11	11,8	108,6	0,63	12,9	94,5	0,58	13,8
15	Velocidade = 7 Corpo-de-prova	108,6	1,09	12,2	106,5	0,65	13,7	102,2	0,63	14,7
16	Cor				110,8	0,65	14,0	78,5	0,55	14,8
17					105,4	0,74	12,6	75,0	0,53	14,5
18					103,3	0,65	13,4	81,7	0,56	14,6
19					109,7	0,66	13,6	83,7	0,54	14,0
20					108,7	0,65	13,4	100,1	0,61	14,9
21					99,1	0,59	13,6	102,6	0,66	14,4
22					109,7	0,73	13,4	91,8	0,63	14,7
23					110,8	0,68	13,7			
24					103,3	0,63	13,6			
Val	or médio	164,0	1,14	12,1	105,3	0,65	13,3	98,1	0,61	14,5
Coef. de	variação (%)	19,5	3,51	1,1	3,3	5,60	3,1	12,1	7,22	2,2

B - MÓDULO DE ELASTICIDADE NA FLEXÃO ESTÁTICA - RESULTADOS DOS ENSAIOS.

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Módulo	Massa	Teor de	Módulo	Massa	Teor de	Módulo	Massa	Teor de
de-prova	Corpo-	de elasti-	específica	umidade	de elasti-	específica	umidade	de elasti-	específica	umidade
	de-prova	cidade	aparente	de ensaio	cidade	aparente	de ensaio	cidade	aparente	de ensaid
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1	, W	11609	1,12	12,6	8905	0,64	13,7	7862	0,64	14,3
2	mm/min 50x50 mm	12752	1,18	12,7	8776	0,67	13,8	8412	0,63	14,6
3	1mt/ 0x56	12949	1,11	12,8	8924	0,69	14,2	8906	0,60	15,0
4		13181	1,21	12,7	9713	0,67	13,8	7373	0,58	14,5
5	; =2,	11408	1,23	12,7	8590	0,67	13,9	8364	0,63	14,1
6	łade pro	12232	1,18	12,6	8701	0,69	13,8	7278	0,58	15,0
7	Velocidade =2,5 Corpo-de-prova =	12544	1,18	12,7	9503	0,68	13,7	7694	0,60	14,7
88	Vel	12126	1,19	12,7	9356	0,68	13,9		***************************************	
9	Ŭ				8720	0,66	14,0			
Valo	or médio	12350	1,17	12,7	9021	0,67	13,9	7984	0,61	14,6
Coef.	de variação	5	3,32	0,6	4	2,19	1,2	7	4,02	2,4
11	_	12763	1,12	12,7	8993	0,65	14,0	8152	0,63	13,8
2	in mm	12304	1,13	12,6	8691	0,61	14,1	8065	0,60	14,4
3	mm/min 50x50 m	12133	1,15	12,6	7958	0,69	14,1	7340	0,59	14,5
4	503	12521	1,19	12,5	8743	0,61	14,2	7537	0,64	15,0
5	Velocidade =5,0 mm/min Corpo-de-prova = 50x50 mm	12909	1,14	12,7	8293	0,69	14,3	7551	0,56	14,1
6	de =	13212	1,21	12,8	8899	0,62	13,5	7243	0,57	14,6
7	Velocidade orpo-de-pro	12562	1,19	12,7	8888	0,67	14,4	7678	0,58	14,3
88	eloc po-	12037	1,19	12,6	8741	0,67	14,1		***************************************	
9	Cor <	12712	1,17	12,6	8508	0,64	14,2			
10					8521	0,69	13,8			
Valo	or médio	12573	1,17	12,6	8623	0,65	14,1	7652	0,60	14,4
Coef. de	variação (%)	3	2,51	0,7	4	4,81	1,8	4	5,13	2,5

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Módulo	Massa	Teor de	Módulo	Massa	Teor de	Módulo	Massa	Teor de
de-prova	Corpo-	de elasti-	específica	umidade	de elasti-	específica	umidade	de elasti-	específica	umidade
	de-prova	cidade	aparente	de ensaio	cidade	aparente	de ensaio	cidade	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		13012	1,16	12,8	8397	0,64	13,6	7931	0,65	14,8
2	mm/min 50x50 mm	12432	1,17	12,6	7954	0,69	13,9	6981	0,56	14,2
3	mm/min 50x50 m	12451	1,20	12,8	7702	0,68	13,9	7915	0,63	14,7
4	mn 50x	13217	1,20	12,7	8740	0,65	13,9	8274	0,66	14,3
5	=7,5 va =	12323	1,14	12,8	8579	0,65	13,9	7945	0,62	14,7
6	le = rov	12965	1,11	12,8	9030	0,67	14,0	8248	0,63	14,9
7	idac le-p	12896	1,15	12,9	8575	0,66	14,1	7437	0,55	14,4
8	Velocidade =7 Corpo-de-prova	10702	1,18	12,7	8686	0,63	13,7	7152	0,62	15,2
9	Ve	11796	1,23	12,8	8904	0,67	13,9	***************************************		
10	O	11946	1,20	12,7	8811	0,67	13,9			
Val	or médio	12374	1,17	12,8	8538	0,66	13,9	7735	0,62	14,6
Coef. de	variação (%)	6	3,14	0,7	5	2,94	0,9	6	6,40	2,3
11		14508	1,17	10,7	9456	0,65	12,9	8824	0,63	12,6
2	a	15262	1,18	10,2	9578	0,65	13,6	8634	0,62	12,8
3	m.in m	13950	1,12	11,3	11025	0,67	12,5	8997	0,62	13,9
4	.5 mm/min = 40x40 mm	15613	1,21	10,5	9523	0,65	12,2	8203	0,60	13,7
5		14687	1,19	10,6	10104	0,60	12,8	8030	0,66	13,3
6	=2,5 va =	14527	1,18	10,5	10207	0,62	12,7	8561	0,61	13,4
7	de = orov	15449	1,18	10,4	9920	0,64	12,8	8225	0,61	10,5
8	ida le-p	15167	1,10	11,9	10324	0,63	12,5	8959	0,63	13,8
9	Velocidade orpo-de-pro	16499	1,04	11,3	10647	0,60	12,7	8415	0,64	12,8
10	Velocidade =2,5 Corpo-de-prova =	14835	1,07	11,6	9317	0,59	13,9	8245	0,58	12,7
11	•	14922	1,13	11,2	11235	0,69	13,1	9269	0,61	13,4
12		15865	1,19	10,5				7871	0,61	14,0
Val	or médio	15107	1,15	10,9	10122	0,64	12,9	8519	0,62	13,1
Coef. de	variação (%)	5	4,65	5,1	6	4,96	3,8	5	3,30	7,1

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Módulo	Massa	Teor de	Módulo	Massa	Teor de	Módulo	Massa	Teor de
de-prova	Corpo-	de elasti-	específica	umidade	de elasti-	específica	umidade	de elasti-	específica	umidade
	de-prova	cidade	aparente	de ensaio	cidade	aparente	de ensaio	cidade	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		14061	1,11	11,7	11517	0,67	12,9	8504	0,58	13,4
2		13541	1,13	11,4	10363	0,59	11,9	8344	0,59	13,4
3	я	15207	1,18	11,4	9983	0,62	12,9	8444	0,60	13,7
4	mm/min 40x40 mm	13158	1,14	11,5	12700	0,72	12,6	8781	0,61	12,3
5	mm/min 40x40 m	12078	1,14	11,2	9084	0,64	12,3	8912	0,63	12,4
6	O, 11	13623	1,10	10,3	9942	0,65	12,5	8699	0,59	13,1
7	; =5. ova :	15961	1,18	10,5	9350	0,64	12,2	8917	0,62	13,9
8	Velocidade =5 Corpo-de-prova	13890	1,13	11,8	10690	0,57	12,4	8904	0,62	13,3
9	locic o-de	15038	1,09	11,0	10521	0,61	11,9	7269	0,58	13,6
10	Ve]	14878	1,19	10,5	11908	0,68	12,3	8662	0,63	13,0
11	O	14587	1,20	10,5				8397	0,56	13,0
12		14658	1,18	10,5				9164	0,65	13,1
13		17459	1,09	11,2						
Val	or médio	14472	1,14	11,0	10606	0,64	12,4	8583	0,60	13,2
Coef. de	variação (%)	9	3,42	4,6	11	6,91	2,7	6	4,16	3,6

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Módulo	Massa	Teor de	Módulo	Massa	Teor de	Módulo	Massa	Teor de
de-prova	Corpo-	de elasti-	específica	umidade	de elasti-	específica	umidade	de elasti-	específica	umidade
	de-prova	cidade	aparente	de ensaio	cidade	aparente	de ensaio	cidade	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
11		13714	1,10	11,8	10031	0,61	12,4	8086	0,61	13,8
2		15782	1,08	11,7	9631	0,61	13,7	7387	0,59	13,1
3	д	13886	1,13	11,9	9194	0,61	13,1	8924	0,62	13,5
4	mm/min 40x40 mm	15070	1,18	10,7	10871	0,67	12,9	9214	0,60	13,8
5	mm/min 40x40 m	15926	1,07	11,3	12503	0,68	12,3	9648	0,59	13,5
6	,5 m = 4(13918	1,16	11,1	11244	0,66	12,8	8229	0,59	12,7
7	s =7 ova	13715	1,07	11,4	11039	0,68	12,8	9128	0,60	13,0
8	Velocidade =7 Corpo-de-prova	15909	1,06	11,6	9655	0,69	12,3	8845	0,61	13,6
9	loci o-de	13641	1,12	11,7	12075	0,69	12,4	7147	0,60	14,1
10	Ve	15631	1,07	11,9	10649	0,65	12,8	9130	0,67	13,0
11	O	13888	1,14	11,2				8037	0,57	13,6
12		13612	1,13	11,9				8527	0,57	14,3
13		13503	1,14	11,5						
Val	or médio	14476	1,11	11,5	10689	0,66	12,7	8525	0,60	13,5
Coef. de	variação (%)	7	3,62	3,1	10	4,88	3,5	9	4,36	3,5

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Módulo	Massa	Teor de	Módulo	Massa	Teor de	Módulo	Massa	Teor de
de-prova	Corpo-	de elasti-	específica	umidade	de elasti-	específica	umidade	de elasti-	específica	umidade
	de-prova	cidade	aparente	de ensaio	cidade	aparente	de ensaio	cidade	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		15143	1,18	11,7	10891	0,67	13,6	8695	0,59	14,0
2		14675	1,20	11,9	10382	0,54	14,2	7262	0,64	13,8
3		15585	1,15	11,9	10490	0,65	13,0	8659	0,63	13,9
4	u	13899	1,14	12,2	10730	0,65	12,6	6589	0,62	13,9
5	mm/min 30x30 mm	15600	1,21	11,8	10569	0,66	13,8	9238	0,63	13,5
6	mm/min 30x30 m	14311	1,18	11,6	11367	0,66	13,6	8218	0,63	13,9
7	Λ, II	14456	1,19	11,5	10078	0,67	13,7	8503	0,60	14,1
8	; =2 ova :	13790	1,15	12,0	11595	0,66	13,9	10337	0,66	13,9
9	Velocidade =2 Corpo-de-prova	12980	1,17	11,8	10136	0,67	13,5	8859	0,63	14,1
10	locik o-de	13401	1,22	11,3	11238	0,65	13,4			
11	Vel	15319	1,18	12,2	10219	0,65	13,5			
12	O	15227	1,20	12,0	10460	0,69	13,8			
13					10988	0,70	13,8	•		
14					10440	0,67	13,6	•		
15					11015	0,66	13,9			
Valo	or médio	14532	1,18	11,8	10706	0,66	13,6	8485	0,63	13,9
Coef. de	variação (%)	6	2,19	2,2	4	5,33	2,8	13	3,24	1,4

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Módulo	Massa	Teor de	Módulo	Massa	Teor de	Módulo	Massa	Teor de
de-prova	Corpo-	de elasti-	específica	umidade	de elasti-	específica	umidade	de elasti-	específica	umidade
	de-prova	cidade	aparente	de ensaio	cidade	aparente	de ensaio	cidade	aparente	de ensaic
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		13599	1,16	12,3	10662	0,66	13,8	8021	0,62	14,1
2		14276	1,15	11,7	10332	0,71	14,0	8942	0,63	14,2
3		14966	1,23	11,4	11631	0,69	14,1	8635	0,63	14,1
4	я	14756	1,20	11,8	10071	0,66	14,2	7751	0,56	14,0
5	mm/min 30x30 mm	14769	1,17	11,5	10309	0,68	14,1	9238	0,64	14,2
6	mm/min 30x30 m	14400	1,19	11,4	10944	0,64	13,8	8241	0,65	14,2
7	5,0 m a = 3(14890	1,25	10,5	10775	0,70	14,0	8749	0,63	13,9
8	s =5 ova	14472	1,19	11,4	11483	0,63	13,5	7461	0,65	14,1
9	Velocidade =5 Corpo-de-prova	14884	1,15	12,2	11666	0,62	13,6	7808	0,60	14,1
10	loci o-de	15728	1,20	11,9	10868	0,65	14,0	9285	0,64	14,2
11	Ve	13768	1,18	11,6	11100	0,65	13,9			
12	O	14704	1,19	12,2	10714	0,69	13,9			
13					10501	0,65	13,2			
14					10443	0,64	13,6			
15					10332	0,66	12,8			
16					10347	0,66	13,6			
Val	or médio	14601	1,19	11,7	10761	0,66	13,8	8413	0,62	14,1
Coef. de	variação (%)	4	2,40	4,2	5	3,90	2,6	8	4,61	0,8

	Velocidade		CUMARU			JEQUITIBÁ	•		QUARUBA	
Corpo-	de ensaio/	Módulo	Massa	Teor de	Módulo	Massa	Teor de	Módulo	Massa	Teor de
de-prova	Corpo-	de elasti-	específica	umidade	de elasti-	específica	umidade	de elasti-	específica	umidade
	de-prova	cidade	aparente	de ensaio	cidade	aparente	de ensaio	cidade	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		14352	1,15	12,2	10365	0,69	13,8	7322	0,56	14,0
2		13611	1,20	11,8	10201	0,67	13,0	7571	0,59	14,0
3		14572	1,17	12,1	10166	0,66	13,4	6814	0,63	13,9
4	g	16133	1,19	12,0	10552	0,65	13,2	7325	0,63	13,8
5	mm/min 30x30 mm	13829	1,23	11,6	9620	0,63	13,5	8351	0,61	14,1
6	mm/min 30x30 m	14720	1,14	12,3	9812	0,63	13,8	9007	0,56	13,9
7	Λ, II	15635	1,16	12,0	9855	0,68	13,5	7859	0,60	13,9
8	: =7, ova :	14707	1,15	12,3	10993	0,67	12,9	7981	0,60	14,0
9	Velocidade =7 Corpo-de-prova	13385	1,21	11,5	10431	0,68	13,9	8170	0,62	14,1
10	locie o-de	14686	1,18	11,6	10929	0,63	13,7	8916	0,57	13,4
11	Ve]	14622	1,20	12,1	10099	0,63	13,7			
12	O	15988	1,18	12,1	11087	0,65	13,6			
13					11066	0,67	13,2			
14					11800	0,63	13,6			
15					11271	0,61	13,3	•		
Val	lor médio	14687	1,18	12,0	10550	0,65	13,5	7931	0,60	13,9
Coef. de	variação (%)	6	2,29	2,3	6	3,75	2,2	9	4,27	1,5

	Velocidade		CUMARU			JEQUITIBÁ	L		QUARUBA	•
Corpo-	de ensaio/	Módulo	Massa	Teor de	Módulo	Massa	Teor de	Módulo	Massa	Teor de
de-prova	Corpo-	de elasti-	específica	umidade	de elasti-	específica	umidade	de elasti-	específica	umidade
	de-prova	cidade	aparente	de ensaio	cidade	aparente	de ensaio	cidade	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		15104	1,16	11,1	9964	0,66	13,0	10361	0,71	13,7
2		15636	1,14	11,9	10547	0,66	13,6	10464	0,63	13,8
3		15429	1,14	12,1	9734	0,67	13,1	9013	0,62	12,9
4		15903	1,13	12,0	11022	0,66	12,9	9549	0,58	13,1
5		15540	1,19	11,8	9889	0,66	12,8	8698	0,65	13,8
6		14155	1,08	12,3	10665	0,69	13,5	10010	0,59	12,7
7		15357	1,19	12,9	10425	0,67	13,1	8552	0,60	13,3
8		15651	1,19	11,3	9477	0,66	13,2	7847	0,55	13,7
9	я	13274	1,16	11,9	10176	0,66	13,1	7562	0,65	13,8
10	mm/min 20x20 mm	16275	1,15	11,8	10129	0,68	13,5	8721	0,58	13,0
11	m/r x20	14318	1,18	11,7	10829	0,67	13,2			
12	.5 m = 20)	17140	1,18	12,1	10931	0,68	13,5			
13	~ 3" III	14741	1,15	12,1	9883	0,66	13,1			
14	Velocidade = 2 Corpo-de-prova		***************************************		10589	0,66	13,2	***************************************		
15	dad e-p				9795	0,65	12,8			
16	Velocidade orpo-de-prc		***************************************		10433	0,67	13,7	***************************************		
17	Vel		***************************************		10458	0,66	13,2	***************************************		
18	Ű		***************************************		10755	0,67	13,3	***************************************		
19			***************************************		11443	0,68	13,5	***************************************		
20			***************************************		11036	0,67	13,3	***************************************		
21			***************************************		10750	0,67	13,2	••••••		
22			***************************************		10699	0,67	13,4	••••••		
23			***************************************		10645	0,68	13,0	••••••		
24			***************************************		9760	0,70	13,6	••••••		
25			***************************************		10697	0,67	13,1			
26					10719	0,67	13,8			
Valo	or médio	15271	1,16	11,9	10441	0,67	13,3	9078	0,62	13,4
	variação (%)	6	2,74	3,7	5	1,59	2,0	11	7,30	3,1

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Módulo	Massa	Teor de	Módulo	Massa	Teor de	Módulo	Massa	Teor de
de-prova	Corpo-	de elasti-	específica	umidade	de elasti-	específica	umidade	de elasti-	específica	umidade
	de-prova	cidade	aparente	de ensaio	cidade	aparente	de ensaio	cidade	aparente	de ensai
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		15204	1,16	12,6	11127	0,66	13,6	10310	0,64	13,5
2		14039	1,08	12,9	10739	0,68	13,2	10350	0,63	13,9
3		14938	1,14	12,6	10047	0,67	13,2	8264	0,65	13,6
4		13976	1,14	12,8	9880	0,65	13,2	8157	0,65	13,8
5		14614	1,14	12,6	9885	0,64	13,6	8318	0,62	13,7
66		16850	1,12	12,7	10964	0,61	13,1	8465	0,66	13,5
7		14084	1,11	12,9	10557	0,61	13,0	9120	0,55	13,8
88		15629	1,22	11,6	10125	0,68	12,6	8393	0,62	13,8
9	u W	15771	1,14	12,7	9930	0,62	13,4	9000	0,67	13,6
10	5,0 mm/min 1 = 20x20 mi	14817	1,16	12,9	10489	0,63	13,2	8257	0,56	13,5
11)x2(15862	1,16	12,6	10054	0,61	13,1			
12	0 m = 20	16348	1,14	12,7	9973	0,61	13,2		***************************************	
13	= 5, va =	14869	1,20	12,5	10518	0,62	13,2			
14	de : pro	15055	1,14	13,9	9999	0,62	13,3			
15	ida de-J	14421	1,11	12,9	10980	0,64	13,4			
16	Velocidade orpo-de-prc	15094	1,06	12,9	10409	0,62	13,1			
17	Velocidade = 5,0 mm/min Corpo-de-prova = 20x20 mm				10181	0,62	13,2			
18	J		***************************************		10282	0,68	12,5		***************************************	
19					11015	0,63	12,4			
20					9857	0,69	12,7			
21					10563	0,61	12,5			
22					10829	0,69	12,6			
23					10103	0,61	12,8			
24					7975	0,69	13,3			
25					10366	0,68	12,8			
	or médio	15098	1,14	12,8	10274	0,64	13,1	8863	0,63	13,7
Coef. de	variação (%)	5	3,53	3,5	6	4,78	2,7	9	6,50	1,1

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Módulo	Massa	Teor de	Módulo	Massa	Teor de	Módulo	Massa	Teor de
de-prova	Corpo-	de elasti-	específica	umidade	de elasti-	específica	umidade	de elasti-	específica	umidad
	de-prova	cidade	aparente	de ensaio	cidade	aparente	de ensaio	cidade	aparente	de ensa
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		15404	1,17	12,8	10936	0,68	12,8	8984	0,62	13,7
2		15234	1,24	12,1	9676	0,69	12,7	8659	0,64	13,7
3		15578	1,15	12,6	10073	0,67	13,1	9497	0,61	13,6
4		15525	1,16	12,6	9683	0,68	13,2	7970	0,60	13,5
5		16032	1,20	12,6	9546	0,71	13,3	9190	0,67	13,6
6		13795	1,21	12,4	9261	0,67	12,8	8834	0,61	13,6
7		13418	1,13	12,2	9880	0,62	12,7	8962	0,55	13,0
8	_	15407	1,15	12,5	9928	0,62	12,7	7799	0,62	13,6
9	mir mm	14308	1,06	12,9	9531	0,67	13,2	8849	0,64	13,7
10	m/m c20	16030	1,10	13,0	10828	0,64	12,4	8115	0,61	13,6
11	Velocidade = 7,5 mm/min Corpo-de-prova = 20x20 mm	16464	1,12	13,1	10166	0,64	13,4	9218	0,63	13,5
12	= 7,5 va =	13967	1,17	12,7	11439	0,65	13,5	***************************************		
13	de =	15908	1,21	12,0	9940	0,63	13,2			
14	idae de-I	14459	1,16	11,8	9797	0,66	13,6			
15	Velocidade orpo-de-prc	11361	1,09	13,1	11005	0,64	13,2	***************************************		
16	Cor			***************************************	10722	0,67	13,4	***************************************		
17				***************************************	10650	0,64	13,5	***************************************		
18				***************************************	11085	0,67	12,9			
19					10396	0,67	13,4			
20		***************************************	***************************************		10124	0,64	13,3			
21		***************************************	***************************************		11234	0,68	13,4			
22					10637	0,67	13,3			
23					8364	0,63	13,1			
24					9640	0,68	13,0			
Val	or médio	14859	1,15	12,6	10189	0,66	13,1	8734	0,62	13,5
Coef. de	variação (%)	9	4,27	3,2	7	3,45	2,4	6	4,69	1,5

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Módulo	Massa	Teor de	Módulo	Massa	Teor de	Módulo	Massa	Teor de
de-prova	Corpo-	de elasti-	específica	umidade	de elasti-	específica	umidade	de elasti-	específica	umidad
	de-prova	cidade	aparente	de ensaio	cidade	aparente	de ensaio	cidade	aparente	de ensai
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		16481	1,24	12,6	9490	0,64	12,2	10503	0,71	14,0
2		16739	1,22	12,8	10472	0,68	12,5	10378	0,63	15,3
3		12589	1,15	12,7	9806	0,67	11,8	8288	0,60	14,7
4		17558	1,21	12,7	9722	0,66	11,3	8439	0,68	14,9
5		10062	1,18	12,7	11065	0,64	12,0	10515	0,69	14,5
6		14402	1,18	12,7	9517	0,67	12,0	10862	0,56	14,7
7		14455	1,16	12,8	8150	0,66	12,5	8636	0,54	14,6
8		12253	1,13	12,5	10180	0,66	12,3	9656	0,62	14,9
9	nin mm	12583	1,13	12,9	11036	0,67	11,7	9206	0,71	14,8
10	Velocidade = 2,5 mm/min Corpo-de-prova = 10x10 mm	13191	1,09	12,9	11565	0,69	11,6	8186	0,58	15,2
11	10x	14962	1,15	12,7	10090	0,66	12,3	12016	0,66	13,7
12	: 2,5 a = 1	12898	1,15	13,0	10125	0,66	12,4	9907	0,64	15,4
13	de = orova	14450	1,18	12,6	9067	0,66	12,3	9425	0,63	14,8
14	idac de-F	14313	1,08	12,7	10670	0,66	12,4	8814	0,62	14,5
15	Velocidade orpo-de-prc	13562	1,11	12,8	10836	0,67	11,7	8924	0,61	14,8
16	Cor	13177	1,20	12,8	11324	0,67	11,7	9431	0,59	14,7
17		14497	1,23	12,6	10892	0,61	11,1	8905	0,58	15,0
18					9471	0,64	11,7	9461	0,57	14,6
19					10502	0,66	11,9			
20					9973	0,65	12,0			
21					11029	0,76	12,2			
22					11065	0,67	12,2			
23					8261	0,62	12,0			
24					10090	0,63	11,6			
Val	lor médio	14010	1,16	12,7	10183	0,66	12,0	9531	0,62	14,7
Coef. de	variação (%)	13	4,05	1,0	9	4,18	3,1	11	8,20	2,8

	Velocidade		CUMARU			JEQUITIBÁ	<u> </u>		QUARUBA	
Corpo-	de ensaio/	Módulo	Massa	Teor de	Módulo	Massa	Teor de	Módulo	Massa	Teor de
de-prova	Corpo-	de elasti-	específica	umidade	de elasti-	específica	umidade	de elasti-	específica	umidade
	de-prova	cidade	aparente	de ensaio	cidade	aparente	de ensaio	cidade	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		13396	1,19	11,8	8347	0,71	12,7	10045	0,61	15,2
2		13234	1,13	11,9	9891	0,63	12,7	8610	0,63	15,5
3		14935	1,19	11,8	8746	0,66	12,1	9159	0,64	14,7
4		17000	1,20	12,0	9527	0,69	12,5	9846	0,64	14,6
5		12644	1,11	12,0	9471	0,68	11,8	9778	0,67	15,2
6		13750	1,19	11,7	8832	0,66	12,5	9854	0,68	14,9
7		12726	1,20	11,9	8627	0,69	12,2	10333	0,62	14,5
8	. 8	10239	1,12	12,2	8572	0,64	11,8	9407	0,64	15,0
9	Velocidade = 5,0 mm/min Corpo-de-prova = 10x10 mm	12959	1,15	12,0	8200	0,67	12,0	9920	0,63	14,8
10	nm/)x1(12654	1,17	12,1	7963	0,65	10,1	7908	0,57	15,3
11	,0 n = 1(14537	1,14	12,2	9109	0,66	11,8	9778	0,64	14,8
12	= 5 va :	11259	1,13	12,2	9137	0,66	12,0	9205	0,58	14,9
13	Velocidade orpo-de-pro	13115	1,19	12,1	9990	0,66	12,1	7510	0,61	14,9
14	ocid	13367	1,18	11,9	11982	0,73	12,0	8732	0,56	14,3
15	Velc	10493	1,11	12,1	8599	0,63	12,4	9510	0,63	14,6
16	ĺ				9465	0,67	12,3	9725	0,61	15,9
17					10047	0,73	12,4	10152	0,59	15,0
18					11065	0,67	12,3	7729	0,62	14,3
19					9014	0,68	12,6	9875	0,60	15,1
20					8854	0,67	12,4	10623	0,64	15,3
21					7981	0,65	12,4			
22					9790	0,66	12,5			
23					9742	0,68	12,2	***************************************		
Val	lor médio	13087	1,16	12,0	9259	0,67	12,2	9385	0,62	14,9
Coef. de	variação (%)	13	2,97	1,2	10	4,09	4,3	9	5,01	2,7

	Velocidade		CUMARU			JEQUITIBÁ	•		QUARUBA	
Corpo-	de ensaio/	Módulo	Massa	Teor de	Módulo	Massa	Teor de	Módulo	Massa	Teor de
de-prova	Corpo-	de elasti-	específica	umidade	de elasti-	específica	umidade	de elasti-	específica	umidade
	de-prova	cidade	aparente	de ensaio	cidade	aparente	de ensaio	cidade	aparente	de ensaid
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		13015	1,10	12,1	8665	0,65	12,8	10765	0,56	14,2
2		13217	1,13	11,9	9169	0,72	13,1	10103	0,66	14,8
3		10846	1,09	12,0	9964	0,63	13,7	9356	0,63	15,0
4		13515	1,18	11,9	10152	0,64	12,6	10561	0,64	14,8
5		12601	1,18	11,9	8950	0,63	13,7	9447	0,61	14,6
6		13099	1,18	12,1	10628	0,63	12,4	9931	0,59	14,1
7		14604	1,14	12,1	11164	0,65	13,3	7821	0,63	14,8
8		13130	1,19	12,1	10899	0,61	13,0	7951	0,62	14,5
9	n in m m	13651	1,19	12,1	10189	0,66	13,3	9546	0,65	14,4
10	mm/min 10x10 mi	13115	1,12	12,2	8188	0,62	13,5	8312	0,59	14,4
11	10x	12162	1,16	12,1	8801	0,62	13,6	9180	0,65	14,5
12	: 7,5 : a = 1	12696	1,12	11,9	9493	0,61	13,5	10163	0,68	14,1
13	de = orova	14359	1,19	12,3	9795	0,64	13,2	8989	0,68	14,9
14	idac de-F	11758	1,11	11,8	10126	0,63	12,9	8309	0,58	13,8
15	Velocidade = 7,5 mm/min Corpo-de-prova = 10x10 mm	9374	1,09	12,2	10011	0,65	13,7	8793	0,63	14,7
16	Cor				10003	0,65	14,0	7018	0,55	14,8
17					10617	0,74	12,6	6540	0,53	14,5
18					10355	0,65	13,4	8069	0,56	14,6
19					11056	0,66	13,6	7415	0,54	14,0
20					10569	0,65	13,4	11668	0,61	14,9
21					8770	0,59	13,6	9463	0,66	14,4
22					10237	0,73	13,4	7773	0,63	14,7
23					10770	0,68	13,7			
24					10520	0,63	13,6			
Val	or médio	12743	1,14	12,1	9962	0,65	13,3	8962	0,61	14,5
Coef. de	variação (%)	10	3,51	1,1	8	5,60	3,1	14	7,22	2,2

C - TENSÃO DE RUPTURA NA COMPRESSÃO PARALELA ÀS FIBRAS - RESULTADOS DOS ENSAIOS.

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	CPA	aparente	de ensaio	CPA	aparente	de ensaio	CPA	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		81,6	1,14	12,3	46,4	0,67	13,3	45,9	0,56	12,9
2		80,8	1,17	12,1	44,7	0,66	14,1	49,5	0,58	13,0
3		79,1	1,11	11,5	44,3	0,68	13,8	46,9	0,58	13,5
4	. 🗷	79,0	1,13	11,8	48,0	0,72	13,7	50,2	0,59	13,5
5	min) m	83,0	1,12	12,0	47,2	0,72	13,1	48,1	0,58	13,6
6) mm/min 50x50 mm	80,6	1,19	12,3	47,8	0,66	13,0	47,6	0,57	13,6
7	60 r = 5(80,6	1,19	12,1	43,4	0,67	14,3	46,8	0,57	13,5
8	=0,60 ova = 5	85,8	1,17	12,3	47,2	0,73	13,9	46,6	0,58	13,4
9	Velocidade =0, Corpo-de-prova	84,6	1,17	12,1	42,8	0,70	13,6	48,0	0,59	13,2
10	ocid	81,7	1,17	12,3	46,3	0,68	14,4	47,7	0,58	13,6
11	Vel	77,0	1,14	12,3	47,0	0,72	13,1	44,8	0,56	13,3
12	O	80,5	1,21	12,4						
13		80,1	1,16	12,7						
14		80,8	1,16	12,2						
15										
Vale	or médio	81,1	1,16	12,2	45,9	0,69	13,7	47,5	0,58	13,4
Coef. de	variação (%)	2,8	2,48	2,3	4,0	3,69	3,7	3,2	1,62	2,0

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	CPA	aparente	de ensaio	CPA	aparente	de ensaio	CPA	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		83,7	1,15	11,6	47,9	0,66	13,3	46,2	0,58	13,2
2		83,6	1,18	11,8	49,3	0,66	13,3	47,4	0,57	13,6
3		82,1	1,16	11,7	47,1	0,70	13,8	47,6	0,57	13,4
4	д	83,5	1,20	11,5	48,3	0,66	13,6	47,8	0,57	13,4
5) mm/min 50x50 mm	81,4	1,11	12,4	43,1	0,71	13,1	51,5	0,59	13,4
6	nm/)x5(83,6	1,15	12,1	49,5	0,66	13,4	45,2	0,57	13,5
7	,20 r	80,8	1,12	12,7	48,7	0,66	13,8	47,5	0,58	13,0
8	=1, ova	85,2	1,22	11,7	47,8	0,66	13,5	48,2	0,60	13,2
9	Velocidade =1. Corpo-de-prova	79,7	1,11	12,5	46,2	0,67	15,0	51,5	0,58	13,4
10	ocić o-de	81,6	1,18	12,2	45,8	0,68	13,0	48,7	0,57	13,7
11	Vel	83,7	1,14	12,5	48,7	0,72	14,1			
12	O	78,3	1,14	12,2	45,9	0,68	13,7			
13		83,0	1,19	11,6	43,4	0,65	13,9			
14		70,8	1,16	12,2	49,8	0,65	13,4			
15		83,1	1,14	12,3						
Vale	or médio	81,6	1,16	12,1	47,2	0,67	13,6	48,2	0,58	13,4
Coef. de	variação (%)	4,3	2,66	3,2	4,5	3,30	3,6	4,2	2,02	1,4

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	CPA	aparente	de ensaio	CPA	aparente	de ensaio	CPA	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		81,8	1,15	11,7	46,4	0,67	13,7	48,5	0,59	13,6
2		80,8	1,13	11,9	46,7	0,67	13,4	44,9	0,56	12,9
3		82,5	1,15	12,0	46,8	0,72	14,2	49,6	0,58	13,8
4	u H	86,9	1,13	12,2	51,7	0,66	13,1	46,2	0,57	13,3
5) mm/min 50x50 mm	81,7	1,12	12,4	48,4	0,67	14,4	50,6	0,59	13,4
6	mm 0x5	84,7	1,18	10,6	46,5	0,71	13,8	45,5	0,56	13,5
7	80,80	83,2	1,12	12,2	47,7	0,70	13,7	51,1	0,59	13,3
8	=1, ova	84,5	1,14	12,3	47,9	0,69	13,9	48,4	0,60	13,5
9	Velocidade =1. Corpo-de-prova	86,5	1,15	11,8	46,7	0,70	13,5	43,6	0,59	13,3
10	o-de	83,1	1,13	12,4	46,0	0,66	14,5	50,4	0,59	13,5
11	Velo	82,5	1,17	11,7	43,7	0,73	13,8			
12	, 0	81,5	1,18	11,3	48,6	0,67	14,0			
13		83,0	1,13	11,7	48,7	0,73	13,9			
14		82,8	1,12	12,3						
15		85,9	1,15	12,6						
	or médio	83,4	1,14	11,9	47,4	0,69	13,9	47,9	0,58	13,4
Coef. de	variação (%)	2,3	1,75	4,3	3,9	3,72	2,7	5,5	2,43	1,8

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	CPA	aparente	de ensaio	CPA	aparente	de ensaio	CPA	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		79,9	1,20	11,4	39,7	0,68	14,4	44,1	0,55	13,3
2		78,5	1,17	11,7	43,4	0,71	13,6	44,2	0,55	13,4
3		76,4	1,12	12,4	46,6	0,69	13,6	46,1	0,56	13,2
4	E E	76,7	1,14	12,3	47,0	0,72	13,2	47,2	0,57	13,1
5	/mir 0 m	82,2	1,17	11,9	42,9	0,71	14,2	43,4	0,60	13,1
6	s mm/min 40x40 mm	81,4	1,20	11,2	47,9	0,73	14,1	43,8	0,54	12,8
7	.48 1 = 4	81,8	1,21	11,2	42,0	0,71	14,7	48,7	0,57	13,2
8		81,5	1,15	12,2	48,3	0,73	13,2	50,0	0,57	13,1
9	Velocidade =0. Corpo-de-prova	79,9	1,17	12,4	43,8	0,67	13,9	40,3	0,57	12,8
10	ocid o-de	79,4	1,17	12,1	38,1	0,68	14,8	44,5	0,55	13,0
11	Velc	78,0	1,13	12,3	43,0	0,68	14,2	47,3	0,56	13,1
12	, 0	77,4	1,15	11,9	46,2	0,67	14,1	51,9	0,58	12,9
13		79,3	1,16	11,8	48,9	0,67	14,2			
14		77,5	1,15	12,3	46,5	0,67	14,1			
15					46,1	0,66	14,3			
Valo	or médio	79,3	1,16	11,9	44,7	0,69	14,0	45,9	0,56	13,1
Coef. de	variação (%)	2,5	2,34	3,6	7,1	3,48	3,4	7,0	2,86	1,5

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	CPA	aparente	de ensaio	CPA	aparente	de ensaio	CPA	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		79,7	1,16	12,1	48,6	0,67	14,1	45,3	0,55	13,3
2		79,8	1,16	12,2	45,0	0,70	11,0	46,3	0,55	13,2
3		81,9	1,18	12,4	44,0	0,70	14,6	43,8	0,54	13,1
4		78,0	1,11	12,2	42,8	0,68	14,1	49,6	0,57	13,2
5	nin mm	80,3	1,17	12,2	48,3	0,67	14,3	42,6	0,54	12,9
66	5 mm/min 40x40 mm	77,2	1,13	12,2	47,8	0,67	14,2	47,8	0,56	13,2
7		80,4	1,13	12,2	46,5	0,70	14,2	45,6	0,55	13,3
8	0,9 'a =	79,5	1,19	11,8	40,6	0,69	14,4	45,8	0,57	13,3
9	Velocidade = 0 Corpo-de-prova	77,2	1,14	12,2	45,4	0,71	13,9	45,3	0,61	13,3
10	Velocidade Vorpo-de-pr	78,7	1,10	12,2	46,4	0,68	14,3	46,1	0,55	13,3
11	eloc rrpo-	82,2	1,20	12,0	44,9	0,68	14,2	45,8	0,55	13,3
12	> 3	82,3	1,14	12,1	43,8	0,68	13,6	49,0	0,57	13,3
13		78,2	1,12	12,3	44,9	0,71	14,1			
14					48,7	0,69	13,7			
15					48,7	0,69	13,9			
16										
Val	or médio	79,7	1,15	12,2	45,8	0,69	13,9	46,1	0,56	13,2
Coef. de	variação (%)	2,2	2,63	1,3	5,3	1,76	6,0	4,3	3,44	1,0

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	CPA	aparente	de ensaio	CPA	aparente	de ensaio	CPA	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
11		83,8	1,22	11,7	46,1	0,68	14,3	51,2	0,59	13,1
2		82,2	1,19	11,6	49,0	0,65	13,3	46,4	0,56	13,1
3		79,6	1,12	12,3	47,5	0,67	14,3	45,0	0,56	12,8
4	in mm	79,4	1,16	12,2	50,1	0,65	13,2	46,6	0,58	13,3
5	mm/min 10x40 mr	76,5	1,18	11,5	48,4	0,66	13,3	49,5	0,59	13,2
6	t mm/min 40x40 mm	84,9	1,14	12,1	48,2	0,71	13,9	40,2	0,56	12,8
7	4 "	82,2	1,18	12,2	46,1	0,68	14,2	47,2	0,57	13,1
8	Velocidade =1, Corpo-de-prova	85,6	1,18	11,7	43,5	0,67	14,6	51,7	0,58	12,8
9	Velocidade orpo-de-pro	86,8	1,17	12,1	50,7	0,66	13,3	51,4	0,58	13,1
10	eloc rpo-	84,2	1,14	12,0	47,3	0,70	14,0	44,9	0,55	13,0
11	C _O	80,5	1,15	12,2	45,9	0,71	13,5	50,2	0,58	13,2
12		86,2	1,17	12,2	49,3	0,70	13,8			
13		82,7	1,13	12,2	49,2	0,71	13,9			
14					49,6	0,71	13,1			
Val	or médio	82,7	1,16	12,0	47,9	0,68	13,8	47,7	0,57	13,0
Coef. de	variação (%)	3,7	2,41	2,4	4,1	3,39	3,6	7,5	2,32	1,3

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	CPA	aparente	de ensaio	CPA	aparente	de ensaio	CPA	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		82,6	1,16	11,8	46,6	0,74	12,9	47,2	0,60	12,9
2		80,4	1,16	12,2	42,5	0,71	14,2	50,9	0,61	12,9
3		80,9	1,19	12,1	47,4	0,68	13,6	41,4	0,55	12,9
4		79,0	1,16	12,1	43,7	0,69	14,1	40,3	0,57	12,6
5		80,6	1,17	11,9	44,8	0,69	14,3	46,9	0,57	13,0
6	in mm	79,1	1,13	12,2	44,8	0,70	14,2	43,3	0,57	12,7
7	0,36 mm/min a = 30x30 mm	80,9	1,18	12,1	44,1	0,70	13,8	45,7	0,56	13,0
8	5 mı 30x	77,6	1,15	12,3	50,2	0,69	13,4	46,9	0,57	13,0
9		79,7	1,16	12,4	44,2	0,69	12,8	45,2	0,57	12,9
10	le =	75,6	1,13	12,0	43,2	0,69	14,0	44,8	0,56	13,0
11	Velocidade = 0 Corpo-de-prova	76,5	1,16	12,1	47,8	0,73	13,0	46,3	0,57	12,9
12	eloc rpo-	84,1	1,18	11,9	44,3	0,67	13,8	47,5	0,58	12,9
13	Co	79,5	1,15	11,6	45,7	0,68	14,3			
14		79,6	1,17	12,2	41,7	0,69	14,0			
15		80,9	1,18	12,2	44,5	0,70	13,6			
16		78,7	1,20	12,2						
17		72,0	1,16	12,2						
18		77,9	1,17	12,3						
Vale	or médio	79,2	1,16	12,1	45,0	0,70	13,7	45,5	0,57	12,9
Coef. de	variação (%)	3,4	1,52	1,6	4,9	2,58	3,7	6,3	3,06	0,9

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	CPA	aparente	de ensaio	CPA	aparente	de ensaio	CPA	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		77,4	1,17	12,2	47,3	0,67	13,8	49,9	0,59	12,7
2		78,8	1,14	12,2	47,0	0,69	12,9	46,0	0,56	12,8
3		82,2	1,16	12,1	48,3	0,74	12,7	44,8	0,56	12,6
4	_	79,8	1,15	11,8	46,0	0,70	12,8	45,0	0,56	12,8
5	2 mm/min 30x30 mm	78,9	1,14	12,3	44,8	0,68	13,6	50,5	0,61	12,8
6	mm/)x3(79,6	1,16	12,4	43,4	0,70	14,2	47,7	0,56	12,7
7	.72 ₁ = 3(84,5	1,17	11,8	47,1	0,68	13,7	45,7	0,59	12,9
8		76,4	1,15	12,3	47,8	0,66	13,5	42,9	0,55	12,8
9	Velocidade = 0 Corpo-de-prova	78,1	1,15	12,2	51,3	0,67	13,3	46,1	0,56	12,8
10	Velocidade Yorpo-de-pr	76,8	1,17	12,3	47,9	0,67	13,3	43,3	0,55	12,6
11	Velo	80,0	1,15	12,2	51,1	0,69	12,8	42,4	0,58	12,7
12	, 0	80,8	1,16	12,3	50,7	0,69	13,6	46,0	0,56	12,7
13		78,8	1,19	12,1	46,7	0,68	14,0			
14		76,9	1,15	12,1	50,5	0,69	13,4			
15					46,7	0,73	13,2			
Val	or médio	79,2	1,16	12,2	47,8	0,69	13,4	45,8	0,57	12,7
Coef. de	variação (%)	2,8	1,19	1,5	4,8	3,06	3,3	5,5	3,21	0,7

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	CPA	aparente	de ensaio	CPA	aparente	de ensaio	CPA	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		86,5	1,17	11,8	51,5	0,71	12,5	41,5	0,55	12,8
2		73,4	1,14	12,4	46,8	0,72	13,9	49,8	0,61	12,7
3		82,1	1,16	12,2	47,6	0,71	13,8	47,5	0,58	12,9
4	- E	80,9	1,16	12,3	45,8	0,67	13,4	44,5	0,58	12,9
5	30x30 mm	75,8	1,15	12,2	47,5	0,69	13,4	40,7	0,56	12,6
6	mm,)x3(76,2	1,13	12,2	52,7	0,72	12,5	46,8	0,58	12,8
7	,08 1	87,3	1,18	11,9	50,8	0,70	13,1	40,6	0,56	12,7
8	= 1 ova	79,6	1,18	12,3	48,8	0,68	13,4	41,6	0,56	12,7
9	Velocidade = 1 Corpo-de-prova	81,6	1,20	12,3	53,1	0,72	12,5	47,5	0,57	12,8
10	Velocidade Yorpo-de-pr	84,5	1,17	11,8	48,8	0,69	13,2	43,8	0,56	12,8
11	Velo	84,5	1,16	12,1	51,9	0,70	13,5	44,2	0,57	12,7
12	. 0	84,4	1,18	11,8	45,5	0,70	13,8			
13		72,5	1,15	12,3	49,4	0,70	13,1			
14		83,1	1,18	11,8	47,0	0,70	13,4			
15		80,8	1,17	12,7	48,9	0,69	13,4			
Val	or médio	80,9	1,17	12,1	49,1	0,70	13,3	44,4	0,57	12,8
Coef. de	variação (%)	5,7	1,51	2,0	5,0	2,17	3,4	7,1	2,50	0,8

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	CPA	aparente	de ensaio	CPA	aparente	de ensaio	CPA	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		78,5	1,15	11,5	46,8	0,70	13,1	42,7	0,57	13,4
2		77,9	1,13	12,0	44,0	0,68	12,9	45,1	0,62	13,7
3		75,0	1,15	11,8	45,5	0,69	13,1	49,8	0,65	13,2
4		78,1	1,13	11,9	40,9	0,70	12,6	41,0	0,60	13,6
5		76,0	1,16	12,2	45,6	0,68	12,8	46,5	0,61	13,3
6		74,6	1,16	12,1	48,1	0,66	12,7	40,7	0,58	13,5
7		75,0	1,15	11,9	39,7	0,64	12,8	40,8	0,60	13,5
8	ч	75,6	1,10	11,9	49,2	0,67	12,8	48,2	0,62	13,0
9	0,24 mm/min a = 20x20 mm	79,1	1,12	11,8	47,3	0,73	13,2	44,3	0,62	13,5
10	mm/1 (20	74,4	1,11	11,9	43,0	0,66	12,8	42,5	0,59	14,0
11	4 m 203	78,9	1,13	11,6	47,6	0,68	13,1	47,2	0,61	13,2
12		72,4	1,13	11,7	47,9	0,71	13,1	40,2	0,56	13,2
13	Velocidade = 0 Corpo-de-prova	77,7	1,13	12,0	47,1	0,69	13,1	45,2	0,61	13,7
14	Velocidade Vorpo-de-pr	77,2	1,18	11,8	42,5	0,65	12,9	41,1	0,57	13,2
15	loci 30-0	72,0	1,17	11,9	48,4	0,70	13,1	44,7	0,57	13,6
16	Vel	78,0	1,17	12,2				44,1	0,61	13,3
17	J	77,0	1,16	11,9				41,2	0,60	13,5
18		77,6	1,15	11,9				41,5	0,59	13,5
19		72,6	1,12	11,3				41,4	0,59	13,0
20		75,0	1,15	11,4				39,3	0,59	13,5
21		75,9	1,17	10,7				43,5	0,57	14,0
22		78,7	1,16	10,4						
23		76,6	1,15	10,3						
24		71,1	1,19	10,4						
Val	or médio	76,0	1,15	11,6	45,6	0,68	12,9	43,4	0,60	13,4
Coef. de	variação (%)	3,1	2,13	5,0	6,4	3,73	1,4	6,6	3,58	2,0

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	CPA	aparente	de ensaio	CPA	aparente	de ensaio	CPA	aparente	de ensaic
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		80,5	1,15	12,2	47,2	0,67	12,6	41,3	0,58	13,3
2		80,2	1,17	12,2	46,6	0,67	12,7	41,6	0,57	13,1
3		81,8	1,20	12,3	46,7	0,70	13,9	41,0	0,57	13,3
4		77,9	1,15	12,0	50,8	0,69	12,4	42,2	0,58	14,1
5		78,3	1,11	12,0	47,1	0,72	12,9	50,5	0,63	13,4
6		79,2	1,15	12,0	41,3	0,63	12,6	42,9	0,58	13,6
7		82,2	1,19	12,2	49,7	0,71	13,1	40,5	0,63	13,2
8	ш	78,5	1,09	12,0	51,5	0,69	12,7	47,1	0,62	13,6
9	0,48 mm/min a = 20x20 mm	77,6	1,15	12,0	48,9	0,71	13,0	48,1	0,62	13,5
10	mm 0x2	79,6	1,10	12,1	47,3	0,72	13,0	43,7	0,63	13,3
11	<u>4,</u> ∥	76,0	1,14	11,9	49,3	0,71	12,8	43,1	0,62	13,4
12	= 0 ova	79,8	1,18	11,7	47,0	0,72	12,8	43,2	0,58	13,9
13	ade e-pr	80,5	1,17	12,1	48,2	0,71	12,7	42,9	0,57	13,9
14	Velocidade = 0 Corpo-de-prova	78,0	1,10	12,2	48,3	0,70	13,7	41,4	0,57	13,4
15	/elc orpo	78,7	1,04	12,3	46,2	0,66	12,8	48,9	0,63	13,9
16	P 0	78,8	1,19	11,8				41,7	0,59	13,2
17		82,4	1,12	12,0				44,5	0,60	13,6
18		76,9	1,18	11,0				47,0	0,61	13,5
19		64,7	1,08	11,8				50,4	0,61	13,4
20		71,2	1,17	11,8				48,1	0,62	13,6
21		78,9	1,17	10,9				46,4	0,59	13,2
22		72,9	1,14	11,2						
23		69,1	1,16	10,5						
Val	or médio	77,6	1,14	11,8	47,7	0,69	12,9	44,6	0,60	13,5
Coef. de	variação (%)	5,5	3,49	4,1	5,0	3,73	3,1	7,3	4,89	2,2

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	CPA	aparente	de ensaio	CPA	aparente	de ensaio	CPA	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		86,7	1,12	11,8	50,0	0,66	12,5	42,8	0,57	13,9
2		84,7	1,18	12,0	46,9	0,70	12,8	43,3	0,56	13,4
3		85,0	1,19	11,9	50,7	0,70	13,0	38,3	0,58	13,6
4		85,6	1,16	12,1	49,7	0,66	12,7	41,0	0,55	13,7
5		85,5	1,15	12,0	50,4	0,70	12,7	40,0	0,56	14,0
6		83,1	1,16	11,8	46,9	0,70	13,7	40,5	0,57	13,7
7		87,1	1,15	12,0	46,0	0,69	12,9	45,6	0,59	14,1
8	д Е	85,8	1,15	11,8	45,5	0,70	13,0	43,8	0,66	13,4
9	0,72 mm/min a = 20x20 mm	87,4	1,15	11,8	48,0	0,71	11,9	38,5	0,58	13,1
10	nm,)x2(82,5	1,17	12,1	45,5	0,70	12,8	44,3	0,62	13,5
11	72 ₁ = 2(79,8	1,10	12,0	46,6	0,71	12,7	46,5	0,60	13,3
12	= 0, ova :	77,7	1,10	12,1	52,2	0,72	12,8	41,0	0,61	13,6
13		86,8	1,17	12,0	47,4	0,70	12,8	43,1	0,57	13,7
14	Velocidade Vorpo-de-pr	87,7	1,11	10,9	48,4	0,70	12,7	44,0	0,61	14,1
15	'elo	83,4	1,15	12,0	46,0	0,71	12,7	46,0	0,58	13,4
16	> 5	86,3	1,15	11,8				42,8	0,57	13,1
17		87,0	1,16	12,0				47,5	0,60	13,5
18		86,1	1,20	12,2				46,1	0,59	13,4
19		74,2	1,07	11,5				45,0	0,58	13,6
20		76,6	1,14	12,1				46,4	0,60	13,7
21		76,8	1,17	10,6				52,4	0,62	13,1
22		74,6	1,11	11,2				45,9	0,57	13,5
23 24		77,9 76.5	1,17	10,5						
	au mádia	76,5	1,13	11,2	40 A	0.70	12.0	42.0	0.50	12.6
	or médio	82,7	1,15	11,7	48,0	0,70	12,8	43,9	0,59	13,6
Coef. de	variação (%)	5,5	2,73	4,1	4,4	2,32	2,8	7,4	4,41	2,2

	Velocidade		CUMARU			JEQUITIBÁ		1	QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	CPA	aparente	de ensaio	CPA	aparente	de ensaio	CPA	aparente	de ensaic
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		73,7	1,11	11,9	43,1	0,72	12,6	36,0	0,57	12,4
2		82,0	1,27	11,9	41,5	0,72	13,6	35,6	0,61	12,9
3		88,0	1,17	11,8	43,4	0,73	12,7	39,6	0,58	13,7
4		84,3	1,14	12,2	43,1	0,75	13,3	37,6	0,57	13,3
5		79,8	1,13	11,5	42,1	0,71	13,0	36,0	0,59	12,8
6		81,9	1,11	12,1	45,4	0,72	12,4	41,0	0,60	13,3
7		88,2	1,20	12,0	41,3	0,70	13,4	39,2	0,58	12,1
8	_ g	64,7	1,15	11,9	45,5	0,72	11,7	37,2	0,59	13,3
9	2 mm/min 10x10 mm	72,7	1,08	12,4	41,4	0,71	13,6	35,7	0,58	13,3
10	nm/)x10	79,1	1,14	12,4	46,1	0,74	12,4	44,1	0,64	12,9
11	0,12 r a = 10	83,6	1,17	11,9	45,0	0,69	12,2	38,4	0,61	13,1
12	= 0, 3va =	84,2	1,18	12,2	44,0	0,70	13,7	43,5	0,62	12,7
13	ide : -pro	80,5	1,15	12,0	45,7	0,72	13,5	40,7	0,58	13,2
14	Velocidade = 0 Corpo-de-prova	91,0	1,20	12,0	45,1	0,70	11,8	43,9	0,60	12,5
15	elo.	84,6	1,19	11,8	46,4	0,68	12,3			
16	> 3	86,7	1,17	11,8						
17		78,1	1,13	11,7						
18		86,7	1,19	11,7						
19		68,1	1,14	11,5					*******************************	
20		81,9	1,17	12,3						
21		74,8	1,12	11,6						
<u>22</u> 23		88,1 68,5	1,17 1,18	12,0 12,0						
<u>23</u> 24		83,7	1,15	11,8						
	or médio	80,6	1,16	11,9	43,9	0,71	12,8	39,2	0,59	13,0
	variação (%)	8,7	3,37	2,1	4,1	2,64	5,3	7,9	3,68	3,3

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	CPA	aparente	de ensaio	CPA	aparente	de ensaio	CPA	aparente	de ensaic
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		76,0	1,17	11,0	43,9	0,71	12,4	36,9	0,57	12,1
2		73,6	1,17	11,4	46,3	0,71	12,6	38,2	0,58	13,8
3		82,0	1,17	11,3	44,8	0,70	12,0	45,7	0,63	13,2
4		91,1	1,20	12,1	42,3	0,74	13,8	39,8	0,59	13,2
5		82,2	1,11	11,3	46,8	0,73	12,6	37,9	0,57	12,1
6		91,2	1,20	11,8	44,1	0,71	12,2	47,6	0,65	13,3
7		85,4	1,15	11,7	44,4	0,71	14,0	39,2	0,56	12,5
8	u E	82,2	1,17	12,0	48,5	0,68	12,9	41,0	0,59	12,6
9	0,24 mm/min a = 10x10 mm	83,1	1,15	11,8	47,5	0,72	12,6	35,4	0,56	13,7
10	mm 0x1	76,9	1,14	11,6	47,4	0,69	12,7	38,6	0,57	12,7
11	<i>₹</i> ॥	85,8	1,12	11,7	47,2	0,72	12,7	44,0	0,64	13,3
12	= 0 ova	78,5	1,13	11,8	46,7	0,71	11,8	36,6	0,57	12,7
13	Velocidade = 0, Corpo-de-prova	82,2	1,13	12,0	42,1	0,71	13,1	38,7	0,55	12,9
14	ocid o-de	83,8	1,16	11,8	43,2	0,72	13,9	39,5	0,56	12,0
15	Velc	74,3	1,12	11,5	47,0	0,73	12,8			
16	P 0	85,6	1,16	11,9						
17		78,6	1,14	11,7						
18		81,7	1,18	11,6						
19		93,3	1,17	11,8						
20		86,2	1,08	11,2						
21		77,1	1,18	11,9						
22		80,9	1,14	11,6						
23		73,4	1,12	11,8						
Val	or médio	82,0	1,15	11,7	45,5	0,71	12,8	39,9	0,58	12,9
Coef. de	variação (%)	6,7	2,52	2,3	4,5	2,10	5,1	8,9	5,21	4,5

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	CPA	aparente	de ensaio	CPA	aparente	de ensaio	CPA	aparente	de ensaid
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		84,8	1,20	11,6	43,6	0,74	12,6	43,7	0,59	11,6
2		89,1	1,20	11,6	48,1	0,71	12,1	39,5	0,56	12,8
3		74,4	1,12	11,8	47,6	0,70	13,0	39,5	0,54	12,3
4		76,3	1,16	11,4	40,9	0,69	13,2	37,0	0,58	13,3
5		73,2	1,12	11,9	46,5	0,71	12,5	39,9	0,59	12,2
6		87,1	1,17	11,8	44,3	0,71	13,0	36,6	0,53	12,1
7		81,8	1,16	11,7	46,1	0,67	12,7	43,2	0,60	12,8
8	u W	77,1	1,18	11,4	45,2	0,71	14,0	40,0	0,56	12,4
9	0,36 mm/min a = 10x10 mm	85,6	1,14	12,2	51,1	0,70	13,5	39,8	0,58	12,6
10	mm 0x1	93,9	1,20	12,0	46,1	0,73	13,1	38,9	0,57	12,3
11	36 = 10	88,1	1,19	12,4	49,4	0,72	13,3	41,4	0,56	11,8
12	= 0 ova	72,1	1,17	11,7	48,1	0,73	12,0	40,4	0,65	12,3
13	Velocidade = 0, Corpo-de-prova	81,2	1,16	11,4	47,5	0,74	11,9	39,9	0,58	12,2
14	Velocidade Vorpo-de-pr	81,5	1,17	11,5	45,8	0,75	13,3	40,3	0,57	12,7
15	/elc orpo	82,8	1,17	12,0	49,3	0,72	13,6			
16	70	82,6	1,10	11,8						
17		82,0	1,12	11,8						
18		87,9	1,13	11,8						
19		80,6	1,19	12,1						
20		76,3	1,16	12,1						
21		78,0	1,15	11,3						
22		80,9	1,09	11,8						
23		84,4	1,09	11,6						
Val	or médio	81,8	1,15	11,8	46,6	0,72	12,9	40,0	0,57	12,4
Coef. de	variação (%)	6,7	2,98	2,4	5,5	2,81	4,8	4,8	4,86	3,5

D - TENSÃO DE RUPTURA- NO CISALHAMENTO PARALELO ÀS FIBRAS - RESULTADOS DOS ENSAIOS.

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	CIS	aparente	de ensaio	CIS	aparente	de ensaio	CIS	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		19,7	1,17	11,6	9,1	0,70	13,1	9,5	0,63	12,6
2		18,7	1,13	11,7	10,2	0,71	13,2	11,2	0,62	12,8
3		18,9	1,17	11,6	9,4	0,71	13,2	11,6	0,66	13,3
4		20,0	1,17	11,7	9,5	0,71	13,0	11,4	0,66	12,6
5	ii. mm	17,0	1,16	11,7	8,8	0,72	13,3	10,9	0,65	13,3
6	=0,60 mm/min .va = 50x50 mm	16,4	1,14	11,6	10,0	0,70	13,2	9,0	0,66	12,8
7) mr 50x	20,9	1,15	11,7	9,1	0,71	12,9	8,3	0,64	13,2
8	0,6(a =	20,7	1,17	11,8	9,4	0,69	12,9	10,2	0,66	12,7
9		19,1	1,17	11,6	7,1	0,73	13,2	9,1	0,65	12,7
10	Velocidade orpo-de-pro	19,2	1,16	11,6	10,2	0,68	12,8	10,7	0,68	13,1
11	eloc rpo-	17,4	1,17	11,9	8,7	0,70	13,0	9,8	0,64	12,8
12	> 3	15,5	1,12	11,7	8,1	0,71	13,1	10,2	0,66	12,9
13		15,8	1,14	11,6	8,0	0,70	13,0	11,5	0,65	12,6
14		19,7	1,17	11,7	8,7	0,71	13,3			
15		18,7	1,14	11,8						
16		16,6	1,16	11,7						
Val	or médio	18,4	1,16	11,7	9,0	0,71	13,1	10,3	0,65	12,9
Coef. de	variação (%)	9,6	1,50	0,8	9,9	1,76	1,2	10,4	2,54	2,0

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	CIS	aparente	de ensaio	CIS	aparente	de ensaio	CIS	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		18,9	1,16	11,7	9,1	0,71	13,2	11,8	0,66	12,9
2		18,0	1,14	11,8	9,5	0,71	13,0	10,9	0,64	13,1
3		15,8	1,19	11,6	8,9	0,70	13,0	11,4	0,68	13,0
4		14,9	1,14	11,7	9,3	0,71	13,3	8,7	0,66	12,9
5	я	16,7	1,16	11,6	9,1	0,69	13,5	10,3	0,64	12,6
6	,20 mm/min = 50x50 mm	18,0	1,14	11,9	8,8	0,69	13,2	11,4	0,66	12,8
7	nm/)x5(18,0	1,17	11,6	8,8	0,72	13,1	10,0	0,63	12,7
8	\approx "	17,2	1,17	11,7	10,3	0,71	13,0	11,0	0,67	12,9
9	Velocidade =1,2 Corpo-de-prova =	18,8	1,12	11,8	10,1	0,71	12,6	9,0	0,69	13,0
10	lade 2-pr	18,6	1,15	11,9	8,8	0,70	13,3	11,9	0,61	12,8
11	oció o-de	19,0	1,13	11,8	9,9	0,71	13,0	11,1	0,64	13,0
12	Vel	18,1	1,17	11,5	9,1	0,69	12,5	11,5	0,64	12,7
13	O	20,3	1,12	11,9	9,2	0,70	13,0	11,1	0,62	12,7
14		18,8	1,14	11,9	8,7	0,70	13,0	11,2	0,61	12,5
15		17,9	1,13	11,7				10,1	0,70	12,7
16		18,9	1,15	11,9						
Vale	or médio	18,0	1,15	11,7	9,3	0,70	13,0	10,8	0,65	12,8
Coef. de	variação (%)	7,6	1,74	1,1	5,6	1,17	2,1	8,9	4,35	1,4

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	CIS	aparente	de ensaio	CIS	aparente	de ensaio	CIS	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		20,3	1,16	11,6	10,1	0,69	12,8	10,9	0,65	12,9
2		19,0	1,16	11,7	8,9	0,70	13,0	10,8	0,65	12,9
3		18,0	1,13	11,7	6,4	0,70	13,1	10,9	0,66	12,8
4	_	18,9	1,18	11,6	10,9	0,72	13,3	11,6	0,64	12,9
5) mm/min 50x50 mm	18,9	1,15	11,9	9,6	0,70	13,5	11,8	0,65	12,8
6	mm/min 30x50 mr	19,5	1,17	11,5	8,9	0,69	13,0	9,6	0,66	12,6
7) m 503	17,7	1,13	11,5	10,1	0,69	13,0	11,5	0,68	13,0
8	=1,80	18,3	1,17	11,4	10,2	0,70	12,9	9,4	0,65	12,7
9		18,7	1,13	11,8	10,1	0,70	12,9	10,6	0,65	13,0
10	Velocidade orpo-de-pro	17,8	1,13	11,9	9,3	0,71	13,4	10,5	0,62	12,7
11	oloc Po-	19,2	1,14	11,8	9,7	0,71	13,2	10,4	0,65	12,9
12	Cor	16,8	1,13	11,5	9,6	0,70	13,1	8,9	0,65	12,7
13		20,1	1,17	11,7	8,2	0,71	12,8	7,5	0,65	12,9
14		18,3	1,13	11,8				9,9	0,62	12,9
15		16,2	1,14	11,6				11,2	0,69	12,5
16		18,8	1,16	11,9						
Val	or médio	18,5	1,15	11,7	9,4	0,70	13,1	10,6	0,65	12,8
Coef. de	variação (%)	5,9	1,62	1,3	12,1	1,28	1,7	8,0	2,42	1,2

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	CIS	aparente	de ensaio	CIS	aparente	de ensaio	CIS	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		22,4	1,08	12,0	9,4	0,69	13,1	10,8	0,65	12,8
2		21,3	1,16	11,8	7,3	0,70	13,3	10,6	0,67	13,0
3		18,2	1,11	12,0	8,0	0,69	13,6	11,6	0,68	13,1
4		16,0	1,15	11,8	9,8	0,70	13,2	10,2	0,66	13,4
5		19,1	1,09	11,9	9,3	0,68	14,0	9,3	0,69	13,0
6		14,0	1,12	11,9	9,3	0,68	14,1	10,2	0,68	13,3
7	- Е	16,9	1,17	11,8	9,2	0,69	13,7	10,1	0,68	13,1
8	Velocidade =0,60 mm/min Corpo-de-prova = 40x40 mm	19,0	1,13	12,0	8,5	0,68	13,7	11,6	0,70	13,0
9	mm 0x4	17,7	1,18	11,9	9,0	0,70	13,7	10,3	0,65	13,4
10	60 ₁ = 40	17,8	1,13	11,8	7,7	0,70	13,6	11,4	0,66	13,3
11	=0, 3va	17,5	1,10	12,0	9,3	0,71	13,6	11,2	0,66	13,1
12	ade ≻pr¤	20,6	1,09	11,9	9,5	0,68	14,1	11,1	0,70	13,4
13	ocid o-de	22,8	1,17	11,9	7,8	0,69	13,5	11,4	0,61	13,1
14	Velocidade orpo-de-pπ	19,2	1,15	11,8				9,8	0,62	13,3
15	Ď	17,2	1,11	12,1				10,0	0,64	13,0
16		22,5	1,12	11,9				10,8	0,68	13,0
17		21,1	1,17	11,9				10,6	0,68	12,9
18								10,3	0,65	13,3
19								9,7	0,68	13,3
20								10,5	0,66	13,3
21								10,9	0,65	13,1
Val	or médio	18,9	1,13	11,9	8,8	0,69	13,6	10,6	0,67	13,2
Coef. de	variação (%)	13,0	3,06	0,6	9,4	1,28	2,3	6,0	3,62	1,3

	Velocidade		CUMARU			JEQUITIBÁ		<u>, </u>	QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	CIS	aparente	de ensaio	CIS	aparente	de ensaio	CIS	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		17,1	1,14	11,8	10,3	0,70	13,5	10,1	0,64	13,1
2		16,6	1,17	11,8	8,4	0,68	14,0	10,1	0,64	13,1
3		20,4	1,11	11,8	8,7	0,70	13,8	8,2	0,64	13,1
4		13,8	1,11	11,7	10,0	0,71	13,3	10,0	0,68	13,3
5		17,0	1,11	12,0	8,6	0,70	13,5	10,2	0,65	13,3
66		19,9	1,09	11,9	9,4	0,69	14,0	12,0	0,67	13,1
7	я	22,7	1,17	11,9	8,3	0,68	13,6	10,8	0,64	13,2
8	min m (23,0	1,17	11,1	8,8	0,70	13,8	10,8	0,63	12,8
9	Velocidade =1,20 mm/min Corpo-de-prova = 40x40 mm	15,3	1,14	11,9	8,6	0,70	13,1	9,0	0,65	13,1
10	20 r = 4(20,7	1,10	12,0	7,2	0,71	13,2	10,4	0,63	13,1
11	=1, ova	24,2	1,12	11,8	9,0	0,70	13,3	11,2	0,61	13,0
12	lade e-pr	20,0	1,12	11,8	9,5	0,70	13,6	10,4	0,67	12,9
13	oció o-de	22,3	1,13	11,7	9,3	0,70	13,8	9,3	0,70	12,8
14	Vel Yorp	21,4	1,13	11,8				11,9	0,67	13,2
15	O	16,8	1,10	12,0				8,6	0,63	13,1
16		16,4	1,16	11,8				10,5	0,65	13,1
17								10,9	0,63	12,7
18								10,4	0,67	13,0
19		***************************************						12,4	0,65	13,4
20								11,9	0,63	12,7
21								10,7	0,68	12,9
Val	or médio	19,3	1,13	11,8	8,9	0,70	13,6	10,5	0,65	13,0
Coef. de	variação (%)	16,0	2,36	1,8	8,9	1,31	2,2	10,7	3,49	1,4

	Velocidade		CUMARU			JEQUITIBÁ		<u></u>	QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	CIS	aparente	de ensaio	CIS	aparente	de ensaio	CIS	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		22,1	1,09	12,0	7,6	0,68	13,9	9,7	0,65	13,2
2		25,5	1,15	11,9	9,7	0,70	13,4	11,0	0,63	13,0
3		16,6	1,11	11,9	9,9	0,69	13,2	9,6	0,65	13,4
4		19,0	1,11	12,0	8,9	0,69	13,6	11,5	0,66	13,3
5		20,2	1,15	12,1	9,2	0,67	13,3	10,1	0,68	13,2
66		17,9	1,12	12,1	10,4	0,70	12,6	8,6	0,66	13,3
7	я	21,5	1,11	11,8	7,7	0,70	13,4	8,2	0,63	13,0
8	Velocidade =1,80 mm/min Corpo-de-prova = 40x40 mm	18,0	1,08	12,0	8,4	0,70	14,1	10,4	0,68	12,8
9	nm/)x4(21,6	1,07	11,9	10,6	0,70	13,2	10,5	0,65	13,0
10	80 r = 4(18,4	1,12	11,9	8,7	0,68	14,0	11,6	0,66	13,2
11	=1, ova	19,0	1,11	12,0	7,5	0,70	13,4	8,6	0,65	13,2
12	lade e-pr	23,0	1,16	11,8	9,7	0,70	13,1	11,2	0,63	12,9
13	oció o-de	18,3	1,17	11,8	8,8	0,71	13,9	9,7	0,65	13,1
14	Vel Yorp	21,4	1,17	11,9				11,8	0,70	13,0
15	O	22,0	1,17	11,8				11,8	0,65	13,4
16		19,3	1,07	11,9				10,7	0,64	13,4
17								12,0	0,67	13,2
18								10,5	0,67	13,1
19		***************************************						10,6	0,64	13,3
20								11,8	0,66	13,5
21								10,9	0,68	13,1
Val	or médio	20,2	1,12	11,9	9,0	0,69	13,5	10,5	0,66	13,2
Coef. de	variação (%)	11,5	3,11	0,8	11,5	1,28	3,1	10,6	2,90	1,3

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	CIS	aparente	de ensaio	CIS	aparente	de ensaio	CIS	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		17,0	1,18	11,8	11,0	0,70	12,6	9,9	0,64	11,9
2		22,0	1,13	11,8	10,2	0,71	12,6	11,2	0,62	12,3
3		18,7	1,15	11,6	10,5	0,72	12,4	10,2	0,65	11,8
4		19,3	1,12	11,8	8,9	0,70	12,7	11,4	0,66	11,9
5		25,6	1,11	11,8	9,9	0,72	12,7	9,7	0,67	11,4
6		16,3	1,17	11,6	11,1	0,72	12,5	12,7	0,66	11,8
7		22,9	1,16	11,7	10,0	0,70	12,9	9,5	0,63	12,6
8		24,0	1,16	11,7	9,5	0,67	12,6	12,3	0,64	11,6
9	u H	19,5	1,16	11,7	9,8	0,69	12,9	11,2	0,66	11,7
10	/mi	20,1	1,18	11,9	10,3	0,70	12,6	9,5	0,60	12,0
11	mm)x3	20,4	1,12	11,7	10,3	0,69	12,8	10,5	0,62	12,5
12	60 mm/min = 30x30 mm	17,5	1,13	11,9	8,8	0,69	12,9	10,4	0,63	12,8
13	=0,60 mm/min 3va = 30x30 mr	18,9	1,16	11,7	10,0	0,69	12,5	11,0	0,65	11,9
14	Velocidade =0, Corpo-de-prova	17,1	1,16	11,7	8,9	0,70	13,2	11,2	0,63	13,7
15	ida de-	19,4	1,13	11,8				11,0	0,65	11,8
16	Velocidade orpo-de-pro	21,6	1,11	11,9				9,5	0,66	12,0
17	Co	21,3	1,13	12,0						
18		23,3	1,13	12,0						
19		19,1	1,13	11,9						
20		23,8	1,16	11,8						
21		20,9	1,16	11,9						
22		14,1	1,16	11,8						
23		12,7	1,13	11,7						
24		26,2	1,19	11,8						
25		17,3	1,17	11,6						
26		23,3	1,16	11,8						
	médio	20,1	1,15	11,8	9,9	0,70	12,7	10,7	0,64	12,1
Coef. de va	ariação (%)	16,5	1,97	0,9	7,4	2,17	1,6	9,0	2,99	4,7

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	CIS	aparente	de ensaio	CIS	aparente	de ensaio	CIS	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		13,5	1,18	11,9	9,6	0,70	13,7	9,5	0,64	13,2
2		14,6	1,14	11,7	9,6	0,70	12,9	10,6	0,62	12,5
3		12,0	1,18	11,6	8,8	0,70	13,4	9,5	0,65	13,0
4	ii mm	13,8	1,15	11,7	9,6	0,72	13,1	10,6	0,60	12,4
5	1/m 30 r	18,0	1,12	11,8	10,7	0,71	13,0	10,5	0,63	12,7
6	mm 0x3	19,0	1,15	11,9	9,5	0,69	13,5	10,8	0,66	12,4
7	Velocidade =1,20 mm/min Corpo-de-prova = 30x30 mm	16,8	1,13	9,0	9,2	0,71	13,1	10,7	0,63	12,7
8	=1,)va	18,7	1,16	11,6	9,4	0,70	13,0	10,1	0,59	12,4
9	ide -prc	18,7	1,11	11,8	9,7	0,70	13,6	10,2	0,60	12,7
10	sida -de	19,6	1,16	12,0	10,4	0,72	13,2	9,1	0,65	12,2
11	Velocidade orpo-de-prc	20,9	1,16	11,8	9,8	0,70	13,2	10,5	0,65	12,2
12	Ç _o <	22,6	1,12	11,9	10,4	0,70	13,8	11,8	0,63	11,9
13		14,4	1,16	11,6	9,2	0,68	13,4	10,6	0,62	12,8
14		22,5	1,18	11,9	9,7	0,69	13,3	10,8	0,65	12,7
15		22,9	1,12	11,9				10,3	0,64	12,7
16		19,5	1,14	12,0				10,2	0,66	13,2
17		14,3	1,13	11,9						
18		13,1	1,17	11,8						
19		22,6	1,12	11,8						
20		20,0	1,11	11,8						
21		20,6	1,17	11,9						
22		15,5	1,15	11,8						
23		13,9	1,17	11,9						
24		22,2	1,18	11,8						
25		21,0	1,18	12,0						
26		20,1	1,15	11,9						
Valo	r médio	18,1	1,15	11,6	9,7	0,70	13,3	10,4	0,63	12,6
Coef. de v	variação (%)	19,2	2,03	4,9	5,1	1,80	1,9	6,1	3,40	3,0

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	CIS	aparente	de ensaio	CIS	aparente	de ensaio	CIS	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		16,9	1,12	11,9	9,5	0,69	13,3	10,5	0,65	12,6
2		15,8	1,13	11,9	9,6	0,73	13,1	12,0	0,67	12,2
3		24,4	1,14	11,9	9,9	0,72	13,3	10,0	0,59	12,6
4	Velocidade =1,80 mm/min Corpo-de-prova = 30x30 mm	18,9	1,17	11,6	11,1	0,73	13,5	10,3	0,59	12,9
5	Velocidade =1,80 mm/min orpo-de-prova = 30x30 mr	13,5	1,17	11,7	10,5	0,69	13,2	8,8	0,59	12,6
6	mm 0x3	13,1	1,13	11,8	10,3	0,72	13,2	10,0	0,65	12,7
7	80 = 3	13,3	1,16	11,5	9,8	0,68	13,6	11,7	0,62	12,5
8	=1, va	21,4	1,15	11,8	9,0	0,70	13,6	11,4	0,66	12,5
9	lde pro	14,8	1,17	11,8	10,9	0,71	13,7	10,5	0,63	12,2
10	ida de-	13,0	1,14	12,1	9,6	0,69	13,6	10,6	0,64	12,2
11	eloc Po-	19,0	1,11	11,8	10,4	0,72	13,3	9,8	0,61	12,7
12	Cor	24,6	1,17	11,6	9,6	0,71	14,0	10,5	0,64	12,3
13	_	16,2	1,13	11,7	9,8	0,69	13,6	9,5	0,65	12,3
14		15,0	1,11	11,8				11,5	0,67	12,8
15		19,4	1,13	12,0				11,1	0,65	12,0
16		19,7	1,14	11,7				11,3	0,67	12,2
17		19,2	1,18	12,0						
18		15,5	1,11	11,8						
19		16,9	1,17	11,8						
20		20,2	1,12	11,9						
21		16,8	1,17	11,6						
22		21,6	1,18	11,8						
23		19,3	1,16	11,7						
24		20,9	1,13	11,8						
25		17,9	1,20	11,9						
26		16,8	1,13	11,8						
27		80,8	1,17	12,7						
Valo	r médio	17,7	1,15	11,8	10,0	0,71	13,5	10,6	0,64	12,5
Coef. de	variação (%)	18,3	2,19	1,8	5,9	2,39	1,9	8,2	4,26	2,1

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	CIS	aparente	de ensaio	CIS	aparente	de ensaio	CIS	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		13,1	1,11	11,7	9,4	0,69	12,9	10,3	0,70	12,3
2		17,7	1,12	12,0	8,9	0,69	13,2	11,9	0,70	11,7
3		19,2	1,06	11,9	11,3	0,70	13,0	12,2	0,73	12,0
4		21,3	1,16	12,1	8,0	0,67	13,7	10,8	0,70	11,9
5		22,9	1,11	11,9	9,8	0,71	13,3	12,2	0,70	11,6
6		22,3	1,12	11,8	10,1	0,70	13,2	12,2	0,72	12,1
7		23,0	1,13	11,9	10,4	0,69	12,7	10,6	0,74	12,1
8		20,4	1,11	12,1	8,3	0,68	12,9	11,8	0,72	12,0
9		21,5	1,12	11,9	8,1	0,67	12,9	11,4	0,67	11,9
10	nin mu	18,2	1,15	12,0	10,1	0,71	13,4	10,2	0,71	12,1
11	n/m 20 1	21,0	1,14	12,0	8,2	0,68	13,0	11,2	0,68	12,1
12	= 0,60 mm/min ova = 20x20 mn	24,9	1,15	11,9	11,1	0,68	12,7	12,4	0,72	12,4
13	,60 = 2	16,2	1,16	12,0	10,6	0,70	13,6	12,6	0,69	12,3
14	= 0 ova	19,1	1,11	11,9	9,3	0,69	13,8	12,1	0,70	12,1
15	ıde -pro	25,0	1,11	12,0	9,6	0,68	12,7	11,4	0,70	11,9
16	erida -de	24,2	1,15	11,2	10,5	0,68	13,2			
17	Velocidade = 0,60 mm/min Corpo-de-prova = 20x20 mm	20,0	1,14	11,6	8,4	0,68	13,0			
18	S S	23,4	1,14	11,9						
19		23,0	1,12	11,9						
20		17,0	1,09	11,9						
21		21,8	1,14	12,2						
22		22,8	1,14	11,9						
23		19,7	1,11	11,9						
24		19,5	1,09	12,0						
25		18,4	1,13	11,7						
26		19,9	1,11	12,0						
	or médio variação (%)	20,6 13,8	1,12 2,10	11,9 1,6	9,5 11,3	0,69 1,61	13,1 2,6	11,6 9,3	0,71 3,19	12,1 2,1

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	CIS	aparente	de ensaio	CIS	aparente	de ensaio	CIS	aparente	de ensaic
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		20,3	1,04	11,8	9,1	0,70	12,8	9,4	0,72	12,0
2		12,4	1,10	11,7	9,0	0,70	13,4	12,3	0,72	12,0
3		21,9	1,14	11,9	7,0	0,71	13,4	9,5	0,71	11,7
4		20,9	1,14	11,9	9,6	0,71	13,5	10,3	0,68	12,0
5		22,3	1,17	11,8	9,4	0,67	14,1	9,4	0,67	11,9
6		21,7	1,15	11,9	9,8	0,71	13,3	8,7	0,68	11,9
7		16,9	1,10	11,6	9,4	0,71	13,1	13,1	0,69	11,8
88		15,5	1,17	12,0	9,6	0,69	13,5	11,8	0,67	12,0
9		25,2	1,17	11,9	6,2	0,71	13,0	11,9	0,65	12,1
10	,2 mm/min = 20x20 mm	22,4	1,13	12,0	8,8	0,68	13,6	12,4	0,68	12,0
11	mm/min 20x20 m	23,6	1,14	12,0	9,5	0,69	13,4	12,7	0,70	11,7
12	00x,	23,2	1,12	12,3	9,3	0,67	13,0	12,0	0,70	11,5
13	<u>5</u> =	24,3	1,15	12,3	7,2	0,68	13,7	12,6	0,69	12,5
14	= 1 3va :	20,8	1,15	12,0	10,3	0,71	13,5			
15	ade -prc	18,9	1,11	12,1	9,0	0,70	13,3			
16	cid -de	17,2	1,12	12,3	9,8	0,68	13,2			
17	Velocidade = 1 Corpo-de-prova	21,2	1,16	12,1	10,3	0,72	13,4			
18	S S	22,2	1,15	12,2						
19		21,8	1,18	12,1						
20		22,1	1,05	12,2						
21		22,2	1,14	12,0						
22		19,2	1,11	12,1						
23		18,6	1,07	12,1						
24		22,2	1,16	11,7						
25		20,3	1,18	12,1						
26		24,9	1,10	12,2						
	or médio	20,9	1,13	12,0	9,0	0,70	13,4	11,2	0,69	11,9
Coef. de	variação (%)	14,1	3,36	1,6	12,8	2,22	2,4	13,6	2,68	2,6

	Velocidade		CUMARU			JEQUITIBÁ			QUARUBA	
Corpo-	de ensaio/	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de	Tensão de	Massa	Teor de
de-prova	Corpo-	ruptura-	específica	umidade	ruptura-	específica	umidade	ruptura-	específica	umidade
	de-prova	CIS	aparente	de ensaio	CIS	aparente	de ensaio	CIS	aparente	de ensaio
		(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)	(MPa)	(g/cm3)	(%)
1		19,8	1,12	11,7	9,3	0,68	12,9	11,0	0,69	12,2
22		18,8	1,11	11,6	9,7	0,68	12,8	11,2	0,68	12,3
3		19,6	1,10	11,8	11,4	0,69	12,8	11,9	0,71	11,7
4		21,6	1,17	11,9	8,6	0,68	12,9	11,9	0,65	11,7
5		28,8	1,17	12,0	9,6	0,67	12,8	8,9	0,68	11,9
6		13,3	1,09	11,8	9,6	0,67	13,1	11,9	0,69	12,7
7		24,9	1,16	12,1	9,4	0,70	13,2	11,4	0,72	12,0
8		13,9	1,09	11,7	7,6	0,69	13,0	12,4	0,67	11,6
9	п	26,1	1,05	11,7	9,4	0,68	12,5	11,3	0,68	11,8
10	nin . m	24,7	1,10	11,7	8,9	0,68	13,4	12,6	0,68	12,4
11	1,8 mm/min 1 = 20x20 mm	15,8	1,12	11,4	9,9	0,70	13,5	11,1	0,69	12,0
12	3 m 200	22,5	1,16	11,6	8,8	0,66	12,8	12,7	0,70	11,6
13	a = a	20,5	1,04	11,3	8,9	0,65	13,0	13,2	0,70	11,4
14	e = rov <i>a</i>	24,6	1,16	11,6	9,1	0,70	13,2	12,1	0,66	11,9
15	dad e-p	26,7	1,12	11,8	8,8	0,69	13,2			
16	Velocidade = 1 Corpo-de-prova	22,8	1,18	11,8	10,5	0,69	12,9			
17	Vel	22,2	1,11	11,8						
18	Ú	14,9	1,11	12,0				•		
19		22,4	1,11	11,7						
20		25,1	1,14	11,5						
21		17,9	1,18	11,9						
22		26,5	1,10	11,4						
23		23,3	1,15	11,7						
24		22,6	1,15	11,5						
25		24,2	1,11	11,8						
26		15,3	1,13	11,9						
Valo	or médio	21,7	1,12	11,7	9,3	0,68	13,0	11,7	0,69	11,9
Coef. de	variação (%)	19,2	3,13	1,6	9,1	2,22	2,0	8,9	2,97	2,9

E - RESUMO DA ANÁLISE DE VARIÂNCIA DA FLEXÃO ESTÁTICA, COMPRESSÃO PARALELA ÀS FIBRAS, CISALHAMENTO PARALELA ÀS FIBRAS, COM TRÊS VELOCIDADES DIFERENTES DE ENSAIOS E CINCO DIMENSÕES DIFERENTES DE CORPOS-DE-PROVA.

CUMARU - Tensão de ruptura na Flexão.

Fonte	Soma dos quadrados	Grau de liberdade	Quadrado médio	F	Nível de significância	Teste de Power(a)
Modelo	13582,200	14	970,157	2,279	0,007	0,969
Intersecção	4577152,217	1	4577152,217	10753,933	0,000	1,000
Dimensão	11345,150	4	2836,287	6,664	0,000	0,992
Velocidade	193,884	2	96,942	0,228	0,797	0,085
Dimensão * Velocidade	1970,423	8	246,303	0,579	0,795	0,263
Erro	75335,779	177	425,626			
Total	4941458,385	192				

a) $\alpha = 0.05$

JEQUITIBA - Tensão de ruptura na Flexão.

	•	JEQUITIDA - I	ensao de ruptura n	a Ficxau.		
Fonte	Soma dos quadrados	Grau de liberdade	Quadrado médio	F	Nível de significância	Teste de Power(a)
Modelo	12065,843	14	861,846	55,609	0,000	1,000
Intersecção	1992704,957	1	1992704,957	128574,747	0,000	1,000
Dimensão	11434,787	4	2858,697	184,451	0,000	1,000
Velocidade	24,747	2	12,373	0,798	0,451	0,185
Dimensão * Velocidade	553,389	8	69,174	4,463	0,000	0,996
Erro	3673,125	237	15,498			
Total	2423669,925	252				

a) $\alpha = 0.05$

QUARUBA - Tensão de ruptura na Flexão.

Fonte	Soma dos quadrados	Grau de liberdade	Quadrado médio	F	Nível de significância	Teste de Power(a)
Modelo	14497,027	14	1035,502	13,896	0,000	1,000
Intersecção	1083068,515	1	1083068,515	14534,171	0,000	1,000
Dimensão	14112,354	4	3528,089	47,345	0,000	1,000
Velocidade	114,780	2	57,390	0,770	0,465	0,179
Dimensão * Velocidade	195,586	8	24,448	0,328	0,954	0,156
Erro	12146,559	163	74,519			
Total	1326585,540	178				•••••••••••••••••••••••••••••••••••••••

a) $\alpha = 0.05$

CUMARU - Módulo de elasticidade na flexão.

Fonte	Soma dos quadrados	Grau de liberdade	Quadrado médio	F	Nível de significância	Teste de Power(a)
Modelo	186069866,356	14	13290704,740	10,084	0,000	1,000
Intersecção	36184939416,602	1	36184939416,602	27454,003	0,000	1,000
Dimensão	169836130,848	4	42459032,712	32,214	0,000	1,000
Velocidade	5711627,950	2	2855813,975	2,167	0,118	0,439
Dimensão * Velocidade	10223174,427	8	1277896,803	0,970	0,461	0,443
Erro	233289631,847	177	1318020,519			
Total	38606564788,465	192				

a) $\alpha = 0.05$

JEQUITIBA - Módulo de elasticidade na flexão.

Fonte	Soma dos quadrados	Grau de liberdade	Quadrado médio	F	Nível de significância	Teste de Power(a)
Modelo	98885467,621	14	7063247,687	13,528	0,000	1,000
Intersecção	21513638479,101	1	21513638479,101	41205,205	0,000	1,000
Dimensão	82958223,885	4	20739555,971	39,723	0,000	1,000
Velocidade	1306617,984	2	653308,992	1,251	0,288	0,271
Dimensão * Velocidade	12037399,127	8	1504674,891	2,882	0,004	0,946
Erro	123740005,729	237	522109,729			
Total	25771787259,553	252			-	

a) $\alpha = 0.05$

QUARUBA - Módulo de elasticidade na flexão.

	QUA	KUDA - MOU	nto de etasticidade na m	exao.		
Fonte	Soma dos	Grau de	Quadrado	E	Nível de	Teste de
Tonte	quadrados	liberdade	médio	1'	significância	Power(a)
Modelo	51844259,796	14	3703161,414	5,088	0,000	1,000
Intersecção	11655764208,913	1	11655764208,913	16014,023	0,000	1,000
Dimensão	46164263,804	4	11541065,951	15,856	0,000	1,000
Velocidade	3237995,996	2	1618997,998	2,224	0,111	0,449
Dimensão * Velocidade	2094743,030	8	261842,879	0,360	0,940	0,169
Erro	118639116,847	163	727847,343			
Total	13677886026,923	178				

a) $\alpha = 0.05$

CUMARU -Tensão de ruptura na compressão paralela às fibras.

	CONT	ire remote ac	representations	essuo pururera as	3 110 1 400 4	
Fonte	Soma dos	Grau de	Quadrado	E	Nível de	Teste de
Ponte	quadrados	liberdade	médio	1	significância	Power(a)
Modelo	1178,702	14	84,193	4,883	0,000	1,000
Intersecção	1659050,303	1	1659050,303	96224,861	0,000	1,000
Dimensão	407,167	4	101,792	5,904	0,000	0,983
Velocidade	432,754	2	216,377	12,550	0,000	0,996
Dimensão * Velocidade	269,563	8	33,695	1,954	0,053	0,805
Erro	4431,037	257	17,241			
Total	1764636,072	272				

a) $\alpha = 0.05$

JEQUITIBÁ - Tensão de ruptura na compressão paralela às fibras.

	JEQUI	TIDA Tensuo	ic ruptura na comp	or cood paraicia as	, iidi us.	
Fonte	Soma dos quadrados	Grau de liberdade	Quadrado médio	F	Nível de significância	Teste de Power(a)
Modelo	447,026	14	31,930	5,909	0,000	1,000
Intersecção	466880,383	1	466880,383	86397,337	0,000	1,000
Dimensão	114,203	4	28,551	5,283	0,000	0,969
Velocidade	279,055	2	139,528	25,820	0,000	1,000
Dimensão * Velocidade	38,421	8	4,803	0,889	0,527	0,408
Erro	1091,583	202	5,404			
Total	471529,037	217				

a) $\alpha = 0.05$

QUARUBA - Tensão de ruptura na compressão paralela às fibras.

	¥ 01.121	2212 1011500 000	p	t cost o pur ureru us	1101000	_
Fonte	Soma dos	Grau de	Quadrado	E	Nível de	Teste de
Polite	quadrados	liberdade	médio	Г	significância	Power(a)
Modelo	1580,043	14	112,860	14,181	0,000	1,000
Intersecção	351336,827	1	351336,827	44146,854	0,000	1,000
Dimensão	1516,639	4	379,160	47,643	0,000	1,000
Velocidade	4,187	2	2,094	0,263	0,769	0,091
Dimensão * Velocidade	63,926	8	7,991	1,004	0,435	0,457
Erro	1305,172	164	7,958			
Total	353622,196	179				

a) $\alpha = 0.05$

CUMARU - Tensão de ruptura no cisalhamento paralela às fibras.

	Committee Tembro de Tupturu no emunicinto pur urbu de Instant							
Fonte	Soma dos quadrados	Grau de] liberdade	Quadrado médio	F	Nível de significância	Teste de Power(a)		
Modelo	430,981	11	39,180	4,518	0,000	1,000		
Intersecção	89786,579	1	89786,579	10353,263	0,000	1,000		
Dimensão	313,017	3	104,339	12,031	0,000	1,000		
Velocidade	11,145	2	5,573	0,643	0,527	0,157		
Dimensão * Velocidade	105,730	6	17,622	2,032	0,062	0,733		
Erro	2090,024	241	8,672					
Total	98482,743	253						

a) $\alpha = 0.05$

JEQUITIBÁ - Tensão de ruptura no cisalhamento paralela às fibras.

Fonte	Soma dos quadrados	Grau de liberdade	Quadrado médio	F	Nível de significância	Teste de Power(a)
Modelo	24,660	11	2,242	2,901	0,002	0,980
Intersecção	14735,689	1	14735,689	19070,441	0,000	1,000
Dimensão	20,341	3	6,780	8,775	0,000	0,994
Velocidade	1,256	2	0,628	0,813	0,446	0,187
Dimensão * Velocidade	3,067	6	0,511	0,661	0,681	0,258
Erro	122,859	159	0,773			
Total	15034,923	171				

a) $\alpha = 0.05$

QUARUBA - Tensão de ruptura no cisalhamento paralela às fibras.

	QUARU	DA - Telisao de l	uptura no cisamam	ento paraicia as n		
Fonte	Soma dos	Grau de	Quadrado	E	Nível de	Teste de
Tonte	quadrados	liberdade	médio	1	significância	Power(a)
Modelo	82,802	11	3,326	3,477	0,000	0,995
Intersecção	26244,242	1	21870,017	22862,219	0,000	1,000
Dimensão	69,585	3	10,574	11,053	0,000	0,999
Velocidade	0,538	2	0,325	0,340	0,712	0,104
Dimensão * Velocidade	11,061	6	0,667	0,698	0,652	0,273
Erro	290,368	211	0,957			
Total	27224,167	223				

a) $\alpha = 0.05$