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� The review study explored three different approaches to predict crashes.

� The use of machine learning techniques in crash prediction models are promising.

� Neural networks is the most used machine learning technique for crash prediction.

� The road-environmental factors are the most used in the three modeling approaches.
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Road safety modeling is a valuable strategy for promoting safe mobility, enabling the

development of crash predictionmodels (CPM) and the investigation of factors contributing

to crash occurrence. This modeling has traditionally used statistical techniques despite

acknowledging the limitations of this kind of approach (specific assumptions and prior

definition of the link functions), which provides an opportunity to explore alternatives

such as the use of machine learning (ML) techniques. This study reviews papers that used

ML techniques for the development of CPM. A systematic literature review protocol was

conducted, that resulted in the analysis of papers and their systematization. Three types of

models were identified: crash frequency, crash classification by severity, and crash fre-

quency and severity. The first is a regression problem, the second, a classificatory one and

the third can be approached either as a combination of the preceding two or as a regression

model for the expected number of crashes by severity levels. The main groups of tech-

niques used for these purposes are nearest neighbor classification, decision trees, evolu-

tionary algorithms, support-vector machine, and artificial neural networks. The last one is

used in many kinds of approaches given the ability to deal with both regression and

classification problems, and also multivariate response models. This paper also presents

the main performance metrics used to evaluate the models and compares the results,

showing the clear superiority of the ML-based models over the statistical ones. In addition,

it identifies the main explanatory variables used in the models, which shows the pre-

dominance of road-environmental aspects as the most important factors contributing to

crash occurrence. The review fulfilled its objective, identifying the various approaches and
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Fig. 1 e General frame
the main research characteristics, limitations, and opportunities, and also highlighting the

potential of the usage of ML in crash analyses.

© 2020 Periodical Offices of Chang'an University. Publishing services by Elsevier B.V. on

behalf of Owner. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The growth of countries and populations has given rise to

various externalities, such as the increase of road crash. There

are millions of deaths from traffic accidents every year, be-

sides severe economic, social, and environmental conse-

quences. Many efforts have been made to reduce the

frequency and severity of traffic accidents. The most efficient

way to tackle the problem is by means of an extensive pro-

gramof road safetymanagement (Nodari and Lindau, 2007), in

which road safety modeling is essential. The modeling

process attempts to adjust a model to the crash data, the

geometric and operational characteristics of the road, and

the environmental conditions, incorporating the most

important factors (Chang, 2005; Hauer, 2004).

Different modeling techniques have been developed to

improve the representation of reality in the models, which

allows the employment of techniques that are more appro-

priate to the problem's data (Costa et al., 2016). Traditionally,

statistical modeling techniques have been used to predict

crashes and classify their severity (Kidando et al., 2019; Lord

and Mannering, 2010; Savolainen et al., 2011). However, the

limitations of this approach have been widely explored,

offering an opportunity to use new approaches, such as

machine learning (ML) techniques.

To the best of the authors' knowledge, papers addressing

the state-of-the-art of road safety modeling using ML tech-

niques are unknown, despite the current importance of this

topic. In general, ML techniques are superficiallymentioned in
work of the review pro
road safety papers. The objective of this paper is to present a

review of the most recent papers reporting the use of ML

techniques to analyze crash data, predict crash frequency,

and classify severity. This paper will first make some obser-

vations concerning crash modeling both for frequency and

severity and then discuss the main features of each of the

methodological approaches presented.
2. Review methodology

This study made use of the systematic literature review (SLR)

methodology to search for, identify, and select appropriate

papers concerning the use of ML techniques to analyze crash

occurrence. The aim of SLR is to identify good quality refer-

ences of real interest to a study. This paper follows the pro-

cedure proposed by Kitchenham and Charters (2007), which is

conducted in three stages, namely planning, conducting, and

reporting, as shown in Fig. 1.

The search terms were divided into two groups: terms

associated to crash prediction models and terms related to

machine learning techniques. The strings were defined to

identify any term associated to crash prediction models (e.g.,

“crash prediction”, “injury severity”, “road traffic crash”,

“crash injury”, combined with the function OR) with the

function and to a term related to machine learning (e.g.,

“machine learning”, “artificial intelligence”, “expert system”).

The platforms selected for conducting the search were CAPES

Periodicals Portal (the Brazilian platform with the largest
cedure (Kitchenham and Charters, 2007).
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selection of international journals) and Google Scholar. The

CAPES Periodicals Portal was selected because it covers many

widely known databases, namely: Web of Science, Scopus,

Journal Citation Reports (JCR), Engineering Village, MAS, ASTM

International, SciFinder, ProQuest, Britannica Academic Edi-

tion, Thomson Reuters, Eighteenth Century Collections Online

and Begell House. Google Scholar is a platform with a wider

reach, capturing results not contemplated by the other

databases.

The set of results was further refined by applying inclusion

criteria (works obtained by snowball sampling) and exclusion

criteria (inaccessible works, works that were not papers, rep-

etitions, works outside the scope of the transportation area,

and works in languages other than English), resulting in 122

papers. Those with a JCR impact factor or a Scientific Journal

Rankings (SJR) index higher than 0.5 were then selected.

Finally, a preliminary analysis of the remaining papers was

conducted, and 26 papers were compatible with the purpose

of this SLR. Fig. 2 displays the publication timeline of the

systematized papers with an identification of their models.

Reporting is the last stage of SLR, in which the papers are

systematized and analyzed. This paper is the result of that

reporting process.
3. Road safety modeling

Wang et al. (2011) stated that crash prediction models have

been widely used to estimate crash frequency for a given

location during a specified period. Savolainen et al. (2011)

highlighted the importance of prediction models for injury

severity as they contribute to the proposal of

countermeasures to reduce crash severity. Kim and

Washington (2006) and Hauer (2004) described how road

safety modeling can provide two kinds of results: estimates

of crash frequency (or severity) based on the infrastructure

characteristics and estimates of how the characteristics of

the infrastructure can influence the expected frequency (or

severity) of crashes.

Different approaches can be used to predict either crash

severity or crash frequency. The response variable in severity

analyses is crash classification, which can be a binary problem

(injury or non-injury; injury or property damage; severe injury

or non-severe injury; possible/non-incapacitating injury or

incapacitating/fatal injury) or a multiclassification problem

(no injury, injury or fatal injury; no injury, possible injury,

evident injury or incapacitating/fatal injury; no injury,

possible injury, evident injury or incapacitating injury or fatal
Fig. 2 e Publication timeline of
injury). Researchers have also investigated the relationship

between crash severity and risk factors (human factors, road-

environmental, and/or vehicle-related factors) including an-

alyses of specific types of crash (e.g., vehicle rollover) or the

vehicle involved (e.g., crash between two light vehicles). Re-

searchers have used crash frequency prediction models as an

attempt to detect a relationship between the number of

crashes and the risk factors, mostly the road-environmental.

The response variable of these models is the number of

crashes per segment or the number of crashes per segment

per year.

Traditionally, statistical techniques have been used to

model road safety. Many models have been used (Lord and

Mannering, 2010): Poisson regression, binomial regression,

negative binomial regression, Poisson-lognormal regression,

gama regression, zero-inflated regression, generalized

estimation equations, negative multinomial model, random

effects model, and random parameters model. For crash

severity, the following models have been proposed

(Savolainen et al., 2011): binary logit, binary probit, Bayesian

ordered probit, Bayesian hierarchical binomial logit,

generalized ordered logit, log-linear model, multinomial logit,

multivariate probit, ordered logit, and ordered probit.

However, the limitations of statistical modeling are widely

acknowledged since each model has its own assumptions and

predefined relationships between dependent and independent

variables (Zeng et al., 2016a), despite the progress achieved

with these techniques. Mussone et al. (1999), Li et al. (2012),

and Chang (2005) also pointed out that statistical modeling

requires assumptions related to data distribution. Such

premises may be untrue and, being violated, might lead to

mistaken estimates and incorrect inferences. The use of

artificial neural networks (ANN) does not require that kind of

predefined relationship between the variables (Abdelwahab

and Abdel-Aty, 2001; Chang, 2005; Li et al., 2012; Mussone

et al., 1999). Instead of defining an analytical functional form,

which may be laborious, a model is reconstructed after

learning from real crash data, obtaining the weights of the

model's variables. In that context, researchers have been

making considerable efforts to explore the applicability of

machine learning techniques to road safety modeling, which

is the object of analysis of this paper.

3.1. Methodological approaches

Machine learning is a sub-division of artificial intelligence and

is widely used as a powerful tool for solving problems in

various domains. ML algorithms involve knowledge of various
the systematized papers.
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areas such as probability and statistics, computational

complexity, information theory, psychology, neurobiology,

and control theory (Basgalupp et al., 2009).

Learning can be divided into supervised, unsupervised, and

semi-supervised learning. In supervised learning, the

response values of the examples in the training set are known;

in other words, the goal is to learn a mapping of x to y given a

training set with the pairs (xi, yi). In this case, the model's
response to the current pattern of inputs is evaluated, which

allows changes that bring the model response closer to the

expected (known) response. In unsupervised learning, the

data are non-labeled (unknown classes) and the objective is to

find a structure (relationships or patterns) in the data (x1, … ,

xn) of the n examples. Semi-supervised learning is an inter-

mediary situation between the other two; in addition to sup-

plying non-labeled data (without a known response), some of

the supervision information is supplied, but not necessarily to

all examples (Chapelle et al., 2006; Decker and Focardi, 1995).

Given a set of input data described by pairs (xi, yi), where x

is the vector of the variables that represent the predictive at-

tributes and y is the label of the class that the example belongs

to, the task is to learn a target function f that maps each set of

attribute x in one of the predefined y classes (Tan et al., 2005).

The class (label) is a special attribute that describes a

characteristic of the phenomenon of interest. If the class is

continuous, it is a regression problem, and, if it is discrete, it

is a classification problem (Chapelle et al., 2006).

The major groups of techniques identified for road safety

modeling were nearest neighbor classification, decision trees,

evolutionary algorithms, support-vector machines, and arti-

ficial neural networks.

Nearest neighbor classification (KNN) is a simple and pio-

neering technique in ML. In a prediction task, the KNN clas-

sifies an observation based on the closest k observations. The

nearest neighbor decision rule is used to assign a new sample

point with the classification associated to the nearest of a set

of previously classified points. Therefore, the class of the

observation of interest should include the majority of the k

closest observations (Devroye et al., 1994).

Decision tree (DT) technique is very useful for classification

tasks. In the construction of a tree, a training set made up of

inputs and outputs (i.e., classes) is formed. The tree structure

consists of a root node that begins the tree, decision nodes

that divide an attribute and form ramifications, and leaves

that contain the classification information. Each node repre-

sents the test of an attribute and the criterion for ramification

is the attribute's utility for classification. Thus, the selected

attribute, one of the tree nodes, generates the greatest infor-

mation gain (entropy); i.e., it provides the best quality for

classification. The tree path (from the root node to each leaf

node) corresponds to an association rule (Quinlan, 1986;

Trabelsi et al., 2019). In decision trees, the induction

algorithms seek the attributes that better generate the

examples, generating sub-trees.

Evolutionary algorithms (EA) are stochastic search

methods based on natural selectionmechanisms in which the

fittest individuals survive (Holland, 1975). Each individual

corresponds to a candidate solution for a problem and is

evaluated by a fitness function, that measures the quality of

the solution. For each iteration (generation), the best
individuals are more likely to be chosen for reproduction.

The selected individuals are subject to crossover (parts of

the genetic material of two individuals are exchanged) and

mutation (part of the genetic material of an individual is

replaced by other random genetic material), generating new

individuals (offspring) that will replace the parents and form

a new generation of the population. That process is

iteratively repeated until a stop criterion is satisfied

(Floreano and Mattiussi, 2008; Yu and Gen, 2010). The two

main types of evolutionary algorithms are genetic

algorithms and genetic programming, and they are

especially useful for optimizing problems, usually associated

with other techniques.

Support-vector machine (SVM) technique is based on sta-

tistical learning theory (Scholkopf and Smola, 2002). It

constructs a hyper plane as a decision surface to maximize

the margin of separation between examples. The model uses

the hyper plane to discriminate the set of test samples in

two groups, namely, positive samples and negative samples.

Although it was originally conceived as a classification

technique, it has been extended to solve regression

problems and problems with non-linearly separable data

(Burges, 1998; Smola and Scholkopf, 2004; Trafalis and

Gilbert, 2006; Üstün et al., 2005).

An artificial neural network (ANN) is a highly complex,

non-linear, parallel processor with a natural propensity for

storing experimental knowledge and making it available af-

terward (Haykin, 2009). A multi-layer perceptron ANN is

typically made up of three kinds of layers: an input layer, an

output layer, and one or more hidden layers. The input layer

receives the values of the explanatory variables, i.e., the

input data. The hidden layer, made up of m neurons, adds

up the weights of the input values of the various

explanatory variables, and calculates the complex

association patterns. A single hidden layer is usually enough

for crash analysis applications, but the definition of the

number of neurons in it is generally the object of

experimentation (Chang, 2005; Villiers and Barnard, 1993).

For the output layer, the values of the various hidden

neurons are summed and the network's output values are

presented. Feedforward is the most common type of

network architecture, in which the propagation of signals is

always from the previous layers to the posterior ones. In

terms of training, the back propagation algorithm is the

most used to minimize errors by adjusting the weights of

the network (Haykin, 2009). The gradient descent method is

generally used. In this case, the cost function is in the

direction in which the function's variation rate is minimal

and it guarantees that the network surface trends in the

direction that leads to the greatest error reduction. Lastly,

the main activation function used is related to the

representational capacity of the neural network and it

introduces a non-linear component. Sigmoid-type functions

are generally employed Fig. 3 displays examples of DT, EA,

SVM, and ANN.

The development of ML culminated in a new approach

described as deep learning (DL). It explores many layers of

non-linear information, supervised or unsupervised, to

analyze or classify patterns (Deng and Yu, 2014). DL is a ML

subarea that builds models capable of extracting

https://doi.org/10.1016/j.jtte.2020.07.004
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Fig. 3 e Techniques identified for road safety modeling. (a) Example of a DT (Abell�an et al., 2013). (b) Typical flow diagram of

EA (Das and Abdel-Aty, 2010). (c) Example of how SVM works for non-linearly separable data (non-linear data set) (Lee and

Park, 2011). (d) Example of how SVM works for non-linearly separable data (non-linear borders in the inputs space) (Lee and

Park, 2011). (e) Example of how SVM works for non-linearly separable data (linear borders in the characteristic space) (Lee

and Park, 2011). (f) Typical structure of three-layered feedforward ANN (Xie et al., 2007).
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characteristics from the lowest (deepest) level to the highest

(most superficial) level (LeCun et al., 2015; Schmidhuber,

2015). This ability overcomes the limitation of raw data

processing, a common problem with many ML techniques.

The most common examples of this approach are deep

neural networks (DNNs), recurrent neural networks (RNNs)

and convolutional neural networks (CNNs), generally applied

in speech recognition, visual object recognition, and object

detection.

As ML techniques have different working principles, road

safety modeling may also take advantage of different ap-

proaches. The use of DT, for example, is indicated and useful

for classifying the crash severity, especially when the objec-

tive is to interpret the interaction of the factors. SVM are

efficient for use in classification problems, with better results

than ANN, but they provide less interpretability than DT. SVM

can also be used for regression problems. Genetic program-

ming is more successful in combination with other machine

learning techniques to optimize the results. Finally, ANN is a

robust technique, with high computational cost, but suitable

for complex problems, such as simultaneous modeling with

multiple outputs. Table 1 displays the papers identified by the

systematic literature review by type of technique and general

characteristics. The main aspects of each work will be

presented in the following sections.

3.1.1. Crash frequency modeling
ML crash prediction models have generally been compared to

negative binomial regression models (NB). In most cases, the

performance of ML models was greater (Chang, 2005; Chang

and Chen, 2005; Li et al., 2008; Xie et al., 2007; Zeng et al.,

2016a).

Among the ML techniques, ANN have been mostly used in

crash predictionmodels with the traditional back propagation

training algorithm (Chang, 2005; Xie et al., 2007; Zeng et al.,

2016a). Çodur and Tortum (2015) compared ANN using two

different training algorithms, back propagation and its

variant, the Levenberg-Macquardt algorithm. The usage of

the latter brought convergence improvement for the ANN,

which confirmed its properness to model crash prediction.

Other ML techniques have been explored, such as CART

(Chang and Chen, 2005) and SVM (Li et al., 2008). Their

performance was also greater than traditional statistical

models. In addition, Xie et al. (2007) investigated the usage

of BNN for a crash prediction model and compared it to

ANN. The BNN's performance was better than an ANN with

back propagation.

3.1.2. Modeling crashes by severity
Crashes can be modeled by severity levels using bivariate or

multivariate structures depending on the number of proposed

levels. Bivariate models only have two levels, such as crashes

with injured (any severity level) and property damage only (no

injuries), as in Sohn and Lee (2003), Alikhani et al. (2013), and

Kwon et al. (2015). Multivariate models have more than two

levels. Abdel-Aty and Abdelwahab (2004) proposed 4 severity

levels: no injury, possible injury, evident injury, and severe/

fatal.

The reviewed studies had different goals with the usage of

ML to model crash severity. Most works explored different
techniques or attempted to improve a single technique by

changing its structure, the training algorithms, the activation

functions, or using auxiliary mechanisms (e.g., data clus-

tering). Clustering brought improvements in numerous ap-

plications, such as genetic programming (Das and Abdel-Aty,

2011), ANN (Alikhani et al., 2013; Sohn and Lee, 2003), DT

(Sohn and Lee, 2003), and latent class analysis (LCA) and

Bayesian networks (RB) (O~na et al., 2013b).

Works that evaluated the application of ML techniques for

crash prediction by severity compared the results with sta-

tistical models. Manymodels have been used for this purpose.

The logit model was used to evaluate the results of the

bivariatemodel of Kwon et al. (2015); the ordered probit model

and multinomial logit were used in comparison to the

multivariate models, such as the models developed by

Abdel-Aty and Abdelwahab (2004), Zeng and Huang (2014),

Iranitalab and Khattak (2017), Zhang et al. (2018), and Wahab

and Jiang (2019). The results indicated the greater

performance of the ML models.

Numerous ML techniques, associated or not, have been

used to explore not only howMLmodels can be improved, but

also the influence of explanatory variables in crash occur-

rence by severity. ANN, DT, and CARTwere themost explored

techniques, but the list of models also include linear genetic

algorithm (LGA), adaptive neuro-fuzzy inference system

(ANFIS), Bayesian network (BN), latent class analysis (LCA),

naive bayes classifiers (NBC), NHPF, support vector machine

(SVM), random forest (RF), k-nearest neighbor (KNN), and

hybrid intelligent genetic algorithm (HIGA). Among the main

conclusions of these studies, some observations can be

mentioned as follows.

� Sensitivity analysis can be used with MLmodels to identify

the most relevant explanatory variables for crash classifi-

cation. This technique was employed with ANN with

bivariate outputs (Delen et al., 2006), ANN with

multivariate outputs (Zeng and Huang, 2014) and with

CART and SVM (Chen et al., 2016).

� Multi-class classification problem is most efficiently

addressed using binary response variables than using one

multi-categorical response (Chen et al., 2016; Delen et al.,

2006).

� The performance of decision treeswas greater than ANN in

Sohn and Lee (2003) and NBC in Kwon et al. (2015). It

presented similar results to CART in O~na et al. (2013a).

These three studies developed bivariate models. The

decision trees also presented an interesting application

for visualizing the importance factors of each

explanatory variable, such as reported by Chang and

Wang (2006).

� However, the performance of RF was greater than DT in the

works of Wahab and Jiang (2019) and Zhang et al. (2018). In

these studies, other techniques were employed, KNN and

SVM, but RF presented a better approach in all cases. The

tested models were all multivariate.
3.1.3. Modeling crashes by both frequency and severity
To obtain a broader view of road safety on highways, Das and

Abdel-Aty (2011) combined analyses of crash frequency and

https://doi.org/10.1016/j.jtte.2020.07.004
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Table 1 e General description of the systematized papers.

Reference Dependent variable Technique
used

Number of
crashes
(period)

Data set
(training/validation)

(%/%)

Study area

Sohn and Lee

(2003)

Classification Injury; property damage only ANN; DT 11,564 (1 year) 60/40 Urban road

Abdel-Aty and

Abdelwahab

(2004)

Classification No injury; possible injury;

evident injury; incapacitating/

fatal injury

ANN 7891 (2 years) 51.9/48.1 Urban road and highway

Chang (2005) Frequency Number of crashes per segment

per year

ANN 1338 (2 years) 75/25 Multilane highway 996 segments (from 0.1 km

to 4.2 km)

Chang and Chen

(2005)

Frequency Number of crashes per segment

per year

CART 1075 (2 years) 75/25 Multilane highway 742 segments of 1 km

Delen et al. (2006) Classification No injury; possible injury; non-

incapacitating injury;

incapacitating injury; fatal

injury

ANN 30,358 (6 years) e Urban road and highway

Chang and Wang

(2006)

Classification No injury; injury; fatal injury CART 12,604 (1 year) e Urban road and highway

Xie et al. (2007) Frequency Number of crashes per segment ANN; BNN 122 (5 years) 60/40; 70/30; 80/20 Two-way two-lane

highway

88 segments (from 1.11 km

to 8.59 km)

Li et al. (2008) Frequency Number of crashes per segment SVM 122 (5 years) 60/40; 70/30; 80/20 Two-way two-lane

highway

88 segments (from 1.11 km

to 8.59 km)

Das and Abdel-

Aty (2010)

Classification No injury; possible/non-

incapacitating injury;

incapacitating/fatal injury

GP 104,952 (3 years) 70/30 Expressway

O~na et al. (2011) Classification Slight injury; severe/fatal injury BN 1536 (3 years) 66.67/33,33 Two-way two-lane highway

Kashani and

Mohaymany

(2011)

Classification Slight injury; severe injury;

fatal injury

CART 21,025 (3 years) 70/30 Two-way two-lane highway

Das and Abdel-

Aty (2011)

Classification Non-severe injury; severe/fatal

injury

GP 57,155 (3 years) 70/30 Urban road Segments of 850 m

Frequency Number of crashes per segment

O~na et al. (2013a) Classification Non-severe injury; severe/fatal

injury

CART; DT 1801 (7 years) 70/30 Two-way two-lane highway

O~na et al. (2013b) Classification Non-severe injury; severe/fatal

injury

BN 3229 (4 years) e Two-way two-lane highway

Alikhani et al.

(2013)

Classification Injury; property damage only ANN; ANFIS 7035 (1 year) 80/20 Highway

Zeng and Huang

(2014)

Classification No injury/property damage

only; possible injury; non-

incapacitating injury;

incapacitating/fatal injury

ANN 53,732 (1 year) 80/20 Highway

Kwon et al. (2015) Classification Property damage only; fatal

injury

DT, NBC 1,350,958 (7 years) 70/30 Highway

Çodur and

Tortum (2015)

Frequency Number of crashes per segment ANN 7285 (8 years) 70/30 Multilane highway 16 segments (from 4 km to

18.4 km)

(continued on next page)
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Table 1 e (continued )

Reference Dependent variable Technique
used

Number of
crashes
(period)

Data set
(training/validation)

(%/%)

Study area

Chen et al. (2016) Classification No injury; non-incapacitating

injury; incapacitating/fatal

injury

CART; SVM 3106 (2 years) 60/40; 70/30; 80/20 Urban road and highway

Zeng et al. (2016a) Frequency Number of crashes per segment

per year

ANN 1612 (5 years) e Highway 211 segments (from 0.15 km

to 9.07 km)

Zeng et al. (2016b) Frequency

by severity

Number of crashes with slight

injuries per segment per year;

number of crashes with severe

or fatal injuries per segment per

year

ANN 1612 (5 years) e Highway 211 segments (from 0.15 km

to 9.07 km)

Iranitalab and

Khattak (2017)

Classification Property damage only; possible

injury; severe injury; disabling/

fatal injury

KNN; SVM;

RF

68,448 (4 years) 70/30 Local, interstate and highway

Zhang et al.

(2018)

Classification No injury; possible injury; non-

capacitating injury;

incapacitating injury; fatal

injury

KNN; DT;

RF; SVM

5538 (3 years) 75/25 Freeway

Dong et al. (2018) Frequency

by severity

Number ofmajor injury crashes

per segment per year; number

of minor injury crashes per

segment per year; number of no

injury crashes per segment per

year

DL; SVM 5365 (5 years) 80/20 Highway 635 segments (from

0.032 km to 19,81 km)

Wahab and Jiang

(2019)

Classification Damage injury; injured;

hospitalized; fatal injury

DT; RF; KNN 8516 (5 years) 10-fold cross validation Urban road

Amiri et al. (2020) Classification Property damage only;

complaint of pain; visible

injury; severe injury; fatal

injury

ANN; HIGA 4070 (1 year) 70/30 Highway

Note: DT means decision trees; CART means classification and regression trees; GP means genetic programming; BN means Bayesian networks; BNN means Bayesian neural networks; ANN means

artificial neural networks; SVM means support vectors machine; DL means deep learning; KNN means k-nearest neighbor; HIGA means hybrid intelligent genetic algorithm; NBC means naı̈ve Bayes

classifiers; ANFIS means adaptive neuro-fuzzy inference system.
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severity. Genetic Programming was used to investigate those

two aspects, frequency and severity, but a joint prediction

model was not developed. For frequency prediction, they

selected the models with the least errors and, for severity

classification, the models with the highest accuracies. Their

results showed the overlap of a set of significant factors

(median, skid resistance, and road width) for both the

frequency and the classificatory models. Their hypothesis

for this overlap was the existence of a complex relationship

between apparently different problems. The authors

underscored that modeling with GP provides independence

for the development of models free from any data

distribution restrictions.

Zeng et al. (2016b) used ANN to explore the nonlinear

relationship between crash frequency by severity and risk

factors. They proposed a network structure optimization and

a rule extraction method to eliminate the possibility of over-

fitting and to deal with the network's “black box”

characteristic. Their results indicated that, if trained and

optimized, neural networks have a better fit and also better

prediction power than the Poisson-lognormal multivariate

model. The authors stated that the extracted rules implied a

nonlinear relationship between each explanatory variable

and crash frequency by severity levels in different

conditions. Accordingly, they believe that the use of

optimization algorithms and rule extraction can provide the

modified neural networks considerable improvements for

modeling crash frequency by severity levels.

As a last example of crash frequency modeling by severity,

Dong et al. (2018) proposed the usage of deep learning in two

steps. First, with an unsupervised step to establish a

relationship between explanatory variables. Second, with a

supervised step to predict the number of crashes by severity

level. The authors also incorporated the unobserved

heterogeneity issues with a layer consisting of a multivariate

negative binomial (MVNB) model. The results, which were

compared to a SVM model, suggest that deep learning is a

better approach to predict crashes since it is capable of

simultaneously modeling crash prediction by severity levels.
Fig. 4 e Group of variables used in
3.2. Explanatory variables

The choice of the explanatory variables is an essential step of

the modeling process and it depends on the purpose of the

model. The inclusion of a variable assumes that it has a degree

of association with the dependent variable of interest.

Therefore, the selection of predictors depends on previous

judgment and knowledge about the data, prior modeling

experience, and availability of data (Hauer, 2015).

Crashes are complex events that involve the interactions of

various contributing factors. Many studies have investigated

aspects that are expected to have influence on crashes, such

as the roadways' geometrical and operational characteristics,

the environment, the condition of the vehicles, lightning and

human factors (Abdel-Aty and Radwan, 2000; Carson and

Mannering, 2001; Elvik et al., 2009; Miaou and Lum, 1993;

Rolison et al., 2018; Wang et al., 2013). To continue research

in this area, it is important to know which variables the

various studies have used in their models. To evaluate the

models, this review grouped the variables in four major

classes: human factors, road-environmental factors, vehicle-

related factors, and crash characterization.

Fig. 4 displays the variables' distribution for crash

classification by severity studies. It shows that all studies

incorporated road-environmental factors into their modeling

even though, in some cases, such as Sohn and Lee (2003),

only one variable was considered. In addition to this study,

only Delen et al. (2006) and Kwon et al. (2015) did not have

most of the variables in their studies related to

environmental conditions. The latter used factors vehicle-

related factors which were entirely absent from the models

of Alikhani et al. (2013), Das and Abdel-Aty (2010), Iranitalab

and Khattak (2017), Kashani and Mohaymany (2011), O~na

et al. (2011), O~na et al. (2013b), Zhang et al. (2018). In other

models, they were inexpressive (i.e., small number of

variables compared to the other groups). In general terms,

human factors and crash characterization were used to the

same extent in developing the models reported in the

literature.
crash modeling by severity.
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Fig. 5 displays the distribution of the variables for each

crash prediction model. There is an evident dominance of

road-environmental factors in all models, and most of them

actually only present this group of variables. All the

analyzed studies made use of road-environmental factors to

develop their models. In crash prediction models, the data

corresponds to highway segments and not for individual

crash occurrences (and their respective characteristics). This

justifies the relative lack of expression of vehicle-related

factors, human factors, and crash characterization factors

for crash prediction models. Individual crash characteristics

and human- and vehicle-related are hard to include in road

segments attributes. In most cases, these factors make no

sense or have no significance in the model.

Joint crash frequency and severity models also segmented

the highway, such as Das and Abdel-Aty (2011), Zeng et al.

(2016b), and Dong et al. (2018). Because of that, these studies

also basically made use of road-environmental factors. Table

2 sets out the most utilized explanatory variables for each

kind of model.

In addition to a general overview of the explanatory vari-

ables used in previous studies, it is essential to recognize the

most important variables to give an indication that may assist

modelers when choosing the variables to use in future studies.

Table 3 displays the most strongly related variables to crash

frequency or severity for each of the works reviewed. For the

models designed to classify crash severity, the variables

considered to be most important are posted speed limit,

traffic volume, land use, traffic flow separation devices

(median or median barrier), pavement surface, horizontal

signaling, roadway width, and the number of lanes. Also,

traffic volume, segment length, horizontal alignment, and

posted speed limit are the most important factors for

models designed to predict crash frequency per segment.
3.3. Performance metrics

Evaluating the performance of the models is as important as

developing them. Certain metrics of performance (e.g., accu-

racy (A), sensitivity (R), specificity (S), and F-measure) have

been used to evaluate the classifiers in the reviewed models.
Fig. 5 e Group of variables used f
Those metrics are based on examples that have been

correctly and incorrectly classified, which are stored in a

confusion matrix. Four possible situations can occur in this

confusion matrix: (i) true positive (TP) e the example is

correctly predicted as belonging to a positive class; (ii) false

positive (FP) e the example is predicted as belonging to the

positive class but actually belongs to the negative one; (iii) true

negative (TN) e the example is correctly predicted as

belonging to the negative class; and (iv) false negative (FN) e

the example is predicted as belonging to the negative class but

actually belongs to the positive one. These values make

possible to measure a model's performance. The accuracy (hit

rate), recall (sensitivity), specificity, precision (P), and F-mea-

sure are obtained using Eqs. (1)e(5).

A¼ TPþ TN

TPþ TNþ FPþ FN
(1)

R¼ TP
TPþ FN

(2)

S¼ TN
TNþ FP

(3)

P¼ TP
TPþ FP

(4)

F-measure ¼ 2PR
Pþ R

(5)

Accuracy refers to the extent to which the test is capable of

determining the true value, or, in other words, to which extent

it is capable of estimating the probability of the classifier being

correct in its predictions. Recall (sensitivity) measures the

capacity ofmaking a positive prediction of a class inwhich the

prediction turns out to be correct, in other words, it is a

measure of how many positive examples were correct out of

the total number of examples. The specificity metrics refer to

the capacity of predicting a negative class in which the pre-

diction is correct, in other words, the number of negative ex-

amples that were predicted out of the total number of

examples. Precision calculates the probability of a positive

prediction being correct in relation to all the samples. Finally,
or modeling crash frequency.
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Table 2 e Main explanatory variables used in the models.

Model Road-environmental variable Human variable Vehicular
variable

Crash characterization
variable

Severity model Weather conditions; lightning;

roadway segment; type of shoulder

Sex; age; seat belt use Vehicle type;

vehicle age

Crash type; time; day of the

week

Frequency model Traffic volume; segment length;

horizontal alignment; shoulder width;

roadway segment

Sex Year; season; vehicles involved

in crash

Frequency and

severity models

Traffic volume; shoulder width; speed

limit; road width; pavement

conditions; segment length

Time; day of the week
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the F-measure is a balanced combination of the precision and

sensitivity metrics (Sun et al., 2003).

The receiver operating characteristics (ROC) curve can also

be used to evaluate the performance of models. It expresses

the relationship between the sensitivity and specificity met-

rics by providing an aggregate performance metric in all

possible classification boundaries. ROC analysis is extensively

used in machine learning and data mining techniques.
Table 3 e Main contributing factors for crash occurrence or sev

Reference

Crash severity prediction model

Abdel-Aty and Abdelwahab (2004) Sex; po

use

Delen et al. (2006) Seat b

Chang and Wang (2006) Type o

Das and Abdel-Aty (2010) Presen

media

O~na et al. (2011) Type o

Kashani and Mohaymany (2011) Seat b

O~na et al. (2013a) Lightn

O~na et al. (2013b) Vehicl

signali

Zeng and Huang (2014) Sex; ag

vehicle

Kwon et al. (2015) Type o

of high

Chen et al. (2016) Seat be

vehicle

charac

Zhang et al. (2018) Lightin

Wahab and Jiang (2019) Locatio

separa

Amiri et al. (2020) Light c

averag

surfac

Crash frequency prediction model

Chang (2005) Segme

vehicle

Chang and Chen (2005) Traffic

curvat

Xie et al. (2007) Segme

Li et al. (2008) Traffic

Çodur and Tortum (2015) Vertica

Zeng et al. (2016a) Traffic

media

Crash frequency and severity prediction model

Das and Abdel-Aty (2011) Traffic

Zeng et al. (2016b) Traffic

precip
Geometrically, it is a probability curve displaying pairs of

values of the FP and the TP rates of a model considered to be a

good fit. The area under the ROC curve (AUC) represents the

separability degree, i.e., it indicates the model's ability to

distinguish between classes. The AUC ranges from 0 to 1, in

which the null value represents a model with 100% mis-

classifications and AUC ¼ 1 corresponds to a model with

totally correct classifications (Fawcett, 2006).
erity.

Main contributing factor

sted speed limit; seat belt use; type of vehicle; point of impact; land

elt use; rollover; sex; age; use of alcohol or drugs; type of vehicle

f collision; contributing circumstances; vehicle/driver action

ce of parking area; posted speed limit; percentage of heavy vehicles;

n barrier; traffic volume

f crash; age; lightning; number of injuries

elt use; cause of crash; pavement surface; weather conditions

ing; type of crash; sex; weather conditions; cause of crash; time

es involved; number of injuries; weather conditions; horizontal

ng; roadway width

e; safety devices (e.g., seat belt); age of vehicle; percentage of heavy

s; point of impact

f collision; type of traffic violation; movement prior to collision; type

way

lt use; pavement surface; weather conditions; maximum damage to

; alcohol or drugs use; age; number of lanes; demographic

teristics of driver

g; collision of type “sideswipe”; road surface type; weather

n type; time of the crash; collision partner; collision type; road

tion; road surface type; day of the week; road shoulder

ondition; existence of the right and left shoulders; cause of collision;

e annual daily traffic (AADT); number of involved vehicles; age; road

e condition; gender

nt in military area; existence of intersections; percentage of heavy

s; number of lanes; traffic volume

volume; precipitation; percentage of heavy vehicles; horizontal

ure

nt length; volume of traffic; lane width

volume; shoulder width

l curvature; traffic volume; horizontal curvature; segment length

volume; posted speed limit; annual precipitation; segment length;

n barrier; bus stop

volume; posted speed limit; roadway width; skid resistance

volume; segment length; posted speed limit; bus stop; annual

itation
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Table 4 e Performance metrics for crash severity prediction models.

Reference Performance metric

Sohn and Lee (2003) Maximum accuracy i) DT: 72.30%; ii) ANN: 70.86%; iii) DT (cluster): 76.10%; iv) ANN (cluster):

73.94%

Abdel-Aty and Abdelwahab (2004) Maximum accuracy i) ANN MLP: 73.5%; ii) ordered probitmodel: 61.7%

Chang and Wang (2006) Maximum accuracy CART: 96.4%

Delen et al. (2006) Maximum accuracy i) ANN with five class: 53.78%; ii) ANN with two class: 99.52%

Das and Abdel-Aty (2010) Maximum accuracy GP1eangle/turning movements: 83.58%; GP2erear-end: 84.53%; GP3ehead-

on: 91.48%

O~na et al. (2011) Maximum accuracy BN: 59%

Kashani and Mohaymany (2011) Average accuracy i) CART with three class: 34.06%; ii) CART with two class: 60.94%

O~na et al. (2013a) Maximum accuracy i) CART: 56%; ii) C4.5: 54%; iii) ID3: 53%

O~na et al. (2013b) Maximum accuracy i) Full dataset: 60%; ii) cluster 1: 64%; iii) cluster 2: 58%; iv) cluster 3: 59%

Alikhani et al. (2013) Maximum accuracy i) ANFIS: 76.11%; ii) ANN: 77.26%; iii) ANFIS (k-means): 77.76%; iv) ANN (k-

means): 79.53%; v) ANFIS (self-organizing maps): 77.47%; vi) RNA (self-

organizing maps): 81.81%

Zeng and Huang (2014) Maximum accuracy i) ANN: 54.84%; ii) optimized ANN: 54.91%; iii) ordered logit model: 51.78%

Kwon et al. (2015) ROC curve DT is better than other two models (logistic regression and naive Bayes

classifier)

Chen et al. (2016) Maximum accuracy (1) For SVM with Gaussian function, i) three class: 45.76%; ii) two class:

53.92%; (2) for SVM with polynomial function, i) three class: 50.91%; ii) two

class: 62.63%

Iranitalab and Khattak (2017) Average accuracy i) KNN: 44% ii) SVM: 26% iii) RF: 26%; iv) multinomial logit model: 25%

Zhang et al. (2018) Average accuracy i) KNN: 77.6%; ii) DT: 79.8%; iii) RF: 78.6%; iv) SVM: 58.1%; v) ordered probit

model: 44.7%; vi) multinomial logit model: 51.4%

Wahab and Jiang (2019) Average accuracy i) DT: 73.64%; ii) RF: 73.91%; iii) KNN: 73.71%; iv) multinomial logit model:

52.04%

Amiri et al. (2020) Average accuracy i) ANN: 22.18%; ii) HIGA: 21.66%
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Almost all severity models used accuracy as a perfor-

mance metric. An exception was the work of Kwon et al.

(2015). This metric will be used as the parameter for

comparing the different models by observing the maximum

or average accuracy of the validation. Table 4 demonstrates

the results.

For regression models, the performance metrics generally

compute the difference between predicted (expected) and

observed (real) values. The main metrics used in regression

models are the mean absolute deviation (MAD), the mean

squared error (MSE), and the root mean square error (RMSE).

The MAD evaluates the prediction error after calculating the

mean absolute error. It does not consider the error direction

and the deviations are equally weighted. The MSE is similar to

the MAD, but it is more sensitive to greater errors because the

deviations are squared. Finally, the RMSE can be understood

as the residuals' standard deviation. It indicates how

dispersed are the data compared to the model, or how close
Table 5 e Performance metrics for crash prediction models.

Reference

Chang (2005) Maximum accuracy i) A

Chang and Chen (2005) Average accuracy i) C

Xie et al. (2007) Minimum error value i) Fo

0.77

Li et al. (2008) Minimum error value i) Fo

MA

Çodur and Tortum (2015) Minimum error value For

Zeng et al. (2016a) Average MAD value i) A
the data points are to a fitted line. Their equations are as

follows.

MAD¼
Pn
i¼1

��yi � byi

��
n

(6)

MSE¼
Pn
i¼1

�
yi � byi

�2

n
(7)

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffi
MSE

p
(8)

where byi and yi are the predicted and observed values,

respectively, and n is the size of the set of training or test.

Table 5 summarizes the results of the studies that developed

crash prediction models.

Finally, formodels that joint predicted crash frequency and

severity, Table 6 demonstrates the results.
Performance metric

NN: 61.4%; ii) regression model: 60.8%

ART: 52.6%; ii) negative Binomial model: 52.3%

r ANN, a) MAD: 0.84; b) MSE: 0.83; ii) for BNN, a) MAD: 0.73; b) MSE:

; iii) for negative binomial model, a) MAD: 0.80; b) MSE: 0.87

r SVM, a) MAD: 0.73; b) MSE: 0.75; ii) for negative binomial model, a)

D: 0.80; b) MSE: 0.87

ANN, MSE: 4.11; RMSE: 2.02; R2: 0.98

NN: 3.57; ii) optimized ANN: 3.43; iii) statistical model: 3.7

https://doi.org/10.1016/j.jtte.2020.07.004
https://doi.org/10.1016/j.jtte.2020.07.004


Table 6 e Performance measurements for crash frequency and severity prediction models.

Reference Performance metric

Das and Abdel-Aty (2011) Severity: maximum accuracy i) Cluster 1: 91.85%; ii) cluster 3: 91.48%; iii) cluster 4: 89.43%

Frequency: minimum MSE 10.264

Zeng et al. (2016b) Minimum error value For slight injury, i) ANN-MAD: 2.76; ii) optimized ANN-MAD: 2.76; iii)

Poisson-lognormal model-MAD: 2.82

For serious or fatal injury, i) ANN-MAD: 1.07; ii) optimized ANN-MAD:

1.03; iii) Poisson-lognormal model-MAD: 1.0

Dong et al. (2018) Average MAD value i) SVM: 0.26; ii) DL: 0.06
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4. Conclusions

This paper's objective was to conduct a systematic review of

the main papers addressing road safety modeling using ML

techniques and obtain a broader and more detailed perspec-

tive of several aspects. The main conclusions are listed in the

following subsections.
4.1. Methodological approaches

The major ML techniques used in crash modeling can be

grouped as follows: nearest neighbor classification, decision

trees, genetic programming, support-vector machines, and

artificial neural networks. Several studies found that the ML

techniques improved the models' performances in compari-

son to statisticalmodels. As these studies used different forms

of measuring the error, a general comparison of each tech-

nique's performance was not possible. However, considering

the aspect of applicability and the results obtained, it seems

that ANN are identified as the most appropriate technique for

modeling crash frequency. ANN are also useful for crash

analysis by severity, and encouraging results were also ob-

tained with the use of CART analysis. Many algorithm pro-

posals (e.g., training and network structure optimization,

sensitivity analysis, and rule set extraction) confer greater

potential to the use of ANN. They seek to eliminate model

over-fitting and also reveal patterns that exist among the

explanatory variables and the outputs (in an attempt to open

the “black box”), which are the most criticized aspects of the

ANN.

Cluster analysis associated to a ML technique for modeling

has shown promising results (Alikhani et al., 2013; Das and

Abdel-Aty, 2011; Iranitalab and Khattak, 2017; O~na et al.,

2013b; Sohn and Lee, 2003). In addition, Abdel-Aty and

Abdelwahab (2004) and Alikhani et al. (2013) demonstrated

that the use of fuzzy logic does not seem to bring

improvements to the models.

Deep learning has also been employed for road safety

modeling in the past years. Dong et al. (2018) proposed a

hybrid model with unsupervised and supervised steps, in

addition to adding a layer to deal with the network's
unobserved heterogeneity issues. As a result, three crash

prediction response variables were modeled simultaneously.

The performance metrics using deep learning were lower

than a quarter of the metrics using SVM. Therefore, this

application shows the potential of using deep learning in

road safety.
4.2. Explanatory variables

The main explanatory variables used in crash modeling by

severity consist of road-environmental factors, human fac-

tors, crash characteristics, and vehicle-related factors, in

descending order of importance. However, Das and Abdel-Aty

(2010), Das and Abdel-Aty (2011), and Iranitalab and Khattak

(2017) only considered road-environmental factors.

Furthermore, those authors underscored that there is no

need to divide the roadway into segments for modeling for

classification purposes, which means that these models can

be based on a greater amount of data (i.e., each crash

occurrence is a single observation for classification, whereas

crash occurrences must be grouped for modeling frequency)

and also lead to an improved generalization capacity.

There is a clear predominance of road-environmental

factors as input variables in crash frequency modeling

studies. The four most important variables (traffic volume,

segment length, horizontal alignment, and posted speed limit)

belong to that group. Also, many studies divided the highway

into segments, either homogeneously (with fixed geometrical

and operational characteristics) or of fixed-length. In addition,

the exposure variables (i.e., annual average daily traffic and

segment length, in case of homogeneous segments) are

covariates in all the frequency models, as expected. Other

studies that developed crash prediction models by severity,

such as Zeng et al. (2016b) and Dong et al. (2018), also

segmented the highway and included roadway-

environmental factors as their explanatory variables.

The models' investigation allowed the establishment of

degrees of importance of each variable because of their

frequent use in crash frequency prediction models. However,

the choice of a group of variables may have been based on

prior data analyses, on convenience, or on data limitations.

However, this explanatory variables' analysis serves as a guide

for new works related to road safety, which could even

investigate the potential of variables that have been ignored or

hardly explored at all.

Three crash frequency models investigated were based on

data of multilane highways in rural environments: Chang

(2005), Chang and Chen (2005), and Çodur and Tortum (2015).

Other models included multi-lane highways, but associated

with other kinds of roadway, such as urban arterial roads. In

addition, some authors failed to specify the type of roadway

for which they undertook the study. The joint frequency-

severity approach in Zeng et al. (2016b) and Dong et al.

(2018) was developed with various types of roadways. Thus,

the proposal of the present paper is useful as it helps to fill a
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gap in crash frequency models by severity in multilane

highways using ML techniques.

4.3. Final remarks

The promising results fromML techniques in crash prediction

models, even comparable to traditional statistical modeling,

led to an increase in the exploratione and publicatione of ML

applied to road safety analysis studies. This paper shows the

progress achieved and the opportunities for further investi-

gation. It is, therefore, expected that this paper encourages

and provides a general overview for researchers interested in

studying this area.
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